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Abstract. A formula for the number of distinct means of nonempty sub-

sets of {1 . . . , n} is derived: the second difference of that counting sequence

is essentially Euler’s totient ϕ, as already stated by Siehler’s formula in [1,
A135342].

1. Encoding of Subsets and Means

Nonempty subsets of the set of numbers from 1 to n can be encoded as binary
words b1b2 . . . bn of n letters where bi ∈ {0, 1}. The letters operate like a mask:
bi = 1 indicates that i is in the subset, bi = 0 indicates that it is not. Nonempty
requires that the word is 6= 00 . . . 0.

Definition 1. The weight of such a binary word is

(1) wb ≡
n∑

i=0

bi,

the number of the bi which are 1.

Definition 2. The (arithmetic) mean of such a subset selecting letters according
to bi is

(2) Mb ≡
∑n

i=0 bii∑n
i=0 bi

,

In mechanics it represents the center of mass of a horizontal scale where unit
masses are placed at position i for all bi = 1.

Definition 3. The torque of such a subset is

(3) tb ≡
n∑

i=0

ibi,

(The descriptive name relates to the interpretation of placing unit masses in the
Definition 2).

There are
(
n
w

)
words with weight w. There are 2n − 1 words of that kind; the

−1 indicates the discarded empty word at w = 1. This is the standard formula for
the row sums of the Pascal triangle.

The means are rational numbers in the interval 1 ≤M ≤ n. The minimum and
maximum are realized by the binary words 1000 . . . 0 and 000 . . . 001, i.e., the cases
of ‘loading’ the scale with a unit mass at the left or right limits, i.e., selecting the
subsets {1} or {n}.

(2) is a mapping of binary words of n letters to Q.
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Definition 4. The number of distinct means in all nonempty subsets of {1, 2, . . . n}
is denoted by |Mn|.

Example 1. For n = 5 the |Mn| = 15 possible means M are M5=
{1, 3/2, 2, 5/2, 7/3, 8/3, 11/4, 3, 7/2, 10/3, 11/3, 13/4, 4, 9/2, 5} .

Lemma 1. The minimum torque for a fixed weight w is given by pushing all letters
1 to the beginning of the word, bi = 1 for 1 ≤ i ≤ w:

(4) t ≥ w(w + 1)

2
.

The maximum torque for a fixed weight and right-most 1-letter at position n is given
by starting the word with a run of n − w zeros followed by a run of w 1’s, bi = 1
for n− w < i ≤ n:

(5) t ≤ w(2n + 1− w)

2
.

The minimum torque for a fixed weight and right-most 1-letter at position n is given
by starting with w − 1 1’s, followed by n− w zeros, and finishing with bn = 1:

(6) t ≥ (w − 1)w

2
+ n.

The purpose of this script is to provide a proof for a formula of 2008 for |Mn|
by Jacob Siehler. There are likley others based on properties of Sturmian words,
but these are not used here.

2. Overlay of Means

Given some set bi and its mean (2), plus another set b′i and its mean Mb′ , one
can construct the mean of the sum of these sets by putting both sets of loads on the
same scale (padding the shorter word by zeros at its end if needed), i.e., considering

the mean of the word b̂ obtained by adding the bits in the binary words, b̂ ≡ bi +b′i.

Remark 1. Our problem further down applies this only for words which have no 1’s
at the same positions, so actually an xor operation is sufficient, but that arithmetics
is more complicated.

The mean of the overlay is

(7) Mb̂ ≡
∑n

i=0 b̂ii∑n
i=0 b̂i

.

A well-knowed formula follows which says that means are added weighted by their
weight:

(8) Mb̂

n∑
i=0

b̂i =

n∑
i=0

b̂ii =

n∑
i=0

(bi + b′i)i = Mb

n∑
i=0

bi + Mb′

n∑
i=0

b′i;

which is the same as saying that torques add arithmetically:

(9) tb̂ = tb + tb′ .
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3. Sets of Mean of Fixed Word-length

The setMn of distinct means derived from all 2n−1 binary words has in general
an order |Mn| less than 2n−1 because some means are mapped to the same rational
number. All palindromic words, for example, are mapped to the same mean value
(1 + n)/2.

Proof. For palindromic words this seems to be obvious. The formal arithmetic
proof starts from the property bi = bn−i+1 for palindromic words splitting (2) into
first half-word, optional middle letter and second half-word, such that

(10) Mb =

∑bn/2c
i=0 bii + [nodd]b(n+1)/2

n+1
2 +

∑n
i=dn/2+1e bii∑n

i=0 bi

where [. . .] is Iverson bracket [2]. Therefore

(11) Mb =

∑bn/2c
i=0 bii + [nodd]b(n+1)/2

n+1
2 +

∑bn/2c
i=0 bn−i+1(n− i + 1)∑n

i=0 bi

=

∑bn/2c
i=0 bii + [nodd]b(n+1)/2

n+1
2 +

∑bn/2c
i=0 bi(n− i + 1)∑n

i=0 bi

=

∑bn/2c
i=0 bi(n + 1) + [nodd]b(n+1)/2

n+1
2∑n

i=0 bi

=
(n + 1)

∑bn/2c
i=0 bi + n+1

2 [nodd]b(n+1)/2∑n
i=0 bi

=
1
2 (n + 1)

∑bn/2c
i=0 2bi + n+1

2 [nodd]b(n+1)/2∑n
i=0 bi

=
1
2 (n + 1)

∑n
i=0 bi∑n

i=0 bi
=

1

2
(n + 1).

�

Another trivial observation is that all integers 1, . . . , n are in the setMn as they
are realized for example by the binary word which has bi = 1 at the index equal to
that mean and bi = 0 otherwise.

Remark 2. Multiple realizations of a common integer mean are obtained by sym-
metrically flipping bi+k and bi−k for one or more k (generalizing the comment about
palindromic words above).

So the remaining core question is: which rational fractions may also appear in
Mn to increase its order beyond n?

4. Incremental Deployment of Words

The superposition principle of Section 2 allows to compute the mean M of a
word by starting from the word 000 . . . 0 and incrementally flipping on the bits
where bi = 1 one at a time in any order. The mean is not a function of any
particular order in which the bi are flipped from 0 to 1 to generate higher weights;
this manuscript selects an order that is suitable to compute the first differences of
the set orders |Mn|.
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Figure 1. Digraph of generating binary words from the root
word 1 by applying a shift-insert operation at each node. The first
3 iterations of the operation are shown. Each edge is labeled with
the generation that produces the value, followed by a +-sign if the
weight was increased by one.

For fixed n we start at the root word 1 with M = w = 1 and generate the others
(children in the language of trees) by inserting the letter 0 or 1 as the new first
letter in front. The digraph of Figure 1 demonstrates the recurrence: the labels of
the nodes are the words, and the labels at the edges are the generations (where a
+ indicates that a 1 was added in front):

That particular deployment ensures that in one new generation all words of the
same length with the right-most 1 at the same place appear. (It imposes a weak
order on all binary words where the rank is the largest i with bi = 1.) The new
generation of words may have means M already produced in earlier generations
(shorter words) or new means M not realized by shorter words. Our strategy is to
recursive: we count the means M in generations that have now produced earlier,
i.e., look at the first differences of |Mn|. This is essentially based on the fact that
appending zeros to a word does not change its mean.

The root word has M = 1, weight w = 1. Prefixing a word with 0 or 1 may be
split into a two steps: (i) a right-shift that moves all 1-bits one position to the right
and insertion of 0 at the then vacant first position, (ii) an optional bit-flip 0 → 1
of the letter at the first position. The right-shift moves all letters bi one place to
the right, so the effect on the mean is M → 1 + M ; no change of w; t→ t + w. (8)
tracks the effect of adding 0 or 1 in front of a word:

• Inserting the letter b′1 = 0 (w = 0) does not modify M or w or t further
• Inserting letter b′1 = 1 (w′ = Mb′ = 1) modifies M further

(12) M → Mw + 1

w + 1

which decreases M and increases w → w + 1, t→ t + 1.
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Figure 2. Digraph of generating binary (t, w) pairs, which are
the labels at each node, from the root word 1 by applying a shift-
insert operation at each node. The first 3 iterations of the operation
are shown.

The net effect on mean and torque of generating a new word (child node) prefixing
one letter 0 or 1 is:

(13) M →

{
1 + M, b′1 = 0
(1+M)w+1

w+1 = 1 + M − M
w+1 , b′1 = 1.

(14) t→

{
t + w, b′1 = 0

t + w + 1, b′1 = 1.
w →

{
w, b′1 = 0

w + 1, b′1 = 1.

Remark 3. This equation demonstrates that a (t, w) pair induces a (t+w,w) pair
and a (t + w + 1, w + 1) pair. To answer the question whether some (t, w) pair
appears in the deployment, a backtracking algorithm is available: (t, w) may have
been a child of (t− w,w) or a child of (t− w,w − 1). (t, w)-values that violate (4)
are not deployable, which helps to prune that backtracking algorithm.

Figure 2 is a reduction of Figure 1 where the labels at the edges still indicate
the generation and two choices of prefixing 0 or 1, but the node labels are t and
w. This digraph is no longer a tree because (t, w) that are common to a subset of
words have been merged into single nodes.

The further step of labelling nodes by M = t/w and w leads from Figure 2 to
Figure 3.

Because the main interest of this manuscript is to count distinct M without
regard to w, the final reduction is to drop the w in the labels to discard that in-
formation and to merge nodes in the deployment graph with a common M . This
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Figure 3. Digraph of distinct pairs of generated (M,w) sepa-
rated by a comma in the labels, after running 4 times the shift-
insert operation.

translates Figure 3 to Figure 4. It has 15 nodes after 4 shift-insertion steps, compli-
ant with sequence [1, A135342]. At that level of representation the ratios M = t/w
are reduced to coprime t and w.

This graphical representation is puzzling, therefore transformed into Table 1.
The table puts M -fractions with the same graph-theoretical distance to the root
node (length of the shortest path between the nodes) into a single row. Row n
contains the M with distance n− 1 to the node M = 1 and smallest label n− 1 of
all edges incident to the node.

Example 2. M = 7/2 is in row 4 because it can be reached (via 1 → 3/2 → 5/2)
in 3 steps from M = 1. It can also be reached in 4 steps from M = 1, but the
smaller number of steps takes precedence.

5. Statistics of Incremental Subsets of Means

Due to the particular deployment order chosen in Section 4, row n in Table 1
contains the M which appear in words with highest 1-bit at position n but not in
words with highest 1-bit at position less than n.
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Figure 4. Deployment graph with nodes labeled by M , after
running 4 times the shift-insert operation. The loops (edges re-
turning to the same node) are cases where M/(w + 1) = 1 on the
right hand side in the second line of (13).

n M
1 1
2 2 3/2
3 3 5/2
4 4 7/2 7/3 8/3
5 5 9/2 10/3 11/3 11/4 13/4
6 6 11/2 13/3 14/3 15/4 17/4 16/5 17/5 18/5 19/5
7 7 13/2 16/3 17/3 19/4 21/4 21/5 22/5 23/5 24/5 23/6 25/6

Table 1. Fractions M generated by the deployment algorithm
earliest by words with highest 1-bit at position n.

Each M is a ratio M = t/w where numerator t and denominator w are coprime.
For torques t and weights w which have common factors the associate entries in the
table are not given by canceling common factors but by backtracking as in Remark
3.
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Example 3. The case (t = 12, w = 4) is generated either by (t = 8, w = 4)—
which is impossible because it violates (4)—, or by (t = 8, w = 3) which actually is
represented by M = 8/3 in the table.

Example 4. The nodes (3, 1), (6, 2) and (9, 3) in Figure 2 are all represented by
M = 3 in the table. Here backtracking gives the same value as by just canceling the
common factors in 9/3 and 6/2.

The structure of the table is as follows:

(1) Denominators of M in row n are at most n − 1. This is manifest in (2)
because the weights of words in that row are ≤ n. M -values in a row
have been ordered first by increasing denominator, second by increasing
numerator.

(2) ‘Injection’ values are the M at the heads of the columns.

Example 5. Injection values in row 5 are 11/4 and 13/4. Injection values
in row 6 are 16/5, 17/5, 18/5 and 19/5. Injection values in row 7 are 23/6
and 25/6.

(3) The numerators t and denominators w must obey (6) and (5) to be reach-
able in n− 1 deployment steps. The actual lower limit is more restrictive:
the t values up to (5) of the previous n are already reachable by earlier
steps, which leads to the additional requirement

(15) t >
w[2(n− 1) + 1− w]

2
.

The t-values that do not meet that condition are listed higher up in the
same column at the same w, which mean they do not yield injection values.
This leads to the arithmetic progressions of values down the columns of the
table, created by the recurrence of the first line in (13).

(4) If w = n − 1, the requirement (15) is weaker than (4), which means the
t-values have not been reached earlier — strictly equivalent to the upper
limit of w described in item (1). Requirements (4) and (5) simplify to

(16)
n(n− 1)

2
≤ t ≤ (n− 1)(n + 2)

2
.

There are n− 1 consecutive integers in that closed interval, actually imple-
mented by the words 0111 . . . 1, 1011 . . . 1, up to 111 . . . 101 with a single
zero. Because the t must be coprime to w (to n−1 in this case), the number
of injection points is ϕ(n− 1).

6. Conclusion

In summary, the number of M values in row n of Table 1 is the same as in row
n − 1 (created by continuing the arithmetic progressions along the columns) plus
ϕ(n− 1) injection points:

(17) rn = rn−1 + ϕ(n− 1).

The number of entries in the table up to and including row n is by definition and
according to our way of deployment

(18) |Mn| =
n∑

i=1

ri ∴ |Mn| − |Mn−1| = rn.
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Combining these two equations for the first differences yields for the second differ-
ences

(19) |Mn| − 2|Mn−1|+ |Mn−2| = ϕ(n− 1),

which is Siehler’s equation in [1, A135342].
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