login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135336 Number of Dyck paths of semilength n with no UUDU's starting at level 0. 2
1, 1, 2, 4, 10, 28, 85, 271, 893, 3013, 10351, 36075, 127219, 453097, 1627378, 5887660, 21436354, 78484402, 288779728, 1067263660, 3960081904, 14746806292, 55094725918, 206450572930, 775724723086, 2922060848734 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Column 0 of A135330. Partial sums of the Fine sequence 1,0,1,2,6,18,... (A000957 without the first term). - Emeric Deutsch, Dec 14 2007

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.

FORMULA

From Emeric Deutsch, Dec 14 2007: (Start)

a(n) = Sum_{j=0..floor(n/3)} (-1)^j*(3*j+1)*binomial(2*n-3*j,n)/(n+1).

G.f.: C/(1+z^3*C^3) = C/[(1-z)*(1+z*C)], where C = [1-sqrt(1-4*z)]/(2*z) is the g.f. of the Catalan numbers (A000108). (End)

a(n) ~ 4^(n+2)/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014

EXAMPLE

a(3)=4 because among the 5 (=A000108(3)) Dyck paths of semilength 3 only UUDUDD does not qualify.

MAPLE

a:=proc(n) options operator, arrow: (sum((-1)^j*(3*j+1)*binomial(2*n-3*j, n), j =0..floor((1/3)*n)))/(n+1) end proc: seq(a(n), n=0..25); # Emeric Deutsch, Dec 14 2007

MATHEMATICA

CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x)/((1-x)*(1+x*(1-Sqrt[1-4*x])/(2*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)

PROG

(PARI) x='x+O('x^50); Vec((1-sqrt(1-4*x))/(x*(1-x)*(3 - sqrt(1-4*x)))) \\ G. C. Greubel, Mar 21 2017

CROSSREFS

Cf. A000108, A135330, A000957.

Sequence in context: A068875 A262543 A192574 * A149825 A149826 A149827

Adjacent sequences:  A135333 A135334 A135335 * A135337 A135338 A135339

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 07 2007

EXTENSIONS

Edited and extended by Emeric Deutsch, Dec 14 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 29 05:17 EDT 2017. Contains 287242 sequences.