login
A135285
Sum of staircase twin primes according to the rule: top * bottom - next top.
0
10, 24, 126, 294, 858, 1704, 3528, 5082, 10296, 11526, 18894, 22320, 32208, 36666, 38976, 51744, 57330, 72618, 79212, 96996, 120684, 175968, 186162, 212922, 271914, 324300, 359382, 381282, 411504, 434790, 655278, 674856, 684726, 735282, 776904
OFFSET
1,1
COMMENTS
While there is multiplication and subtraction in the generation of this sequence, it is still called a sum because the arithmetic processes -,*,/ are derived from addition.
FORMULA
We list the twin primes in staircase fashion as in A135283. Then a(n) = tl(n) * tu(n) + (-tl(n+1)).
a(n) = A037074(n) -A001359(n+1). - R. J. Mathar, Sep 10 2016
PROG
(PARI) g(n) = for(x=1, n, y=twinu(x) * twinl(x) - twinl(x+1); print1(y", ")) twinl(n) = / *The n-th lower twin prime. */ { local(c, x); c=0; x=1; while(c<n, if(ispseudoprime(prime(x)+2), c++); x++; ); return(prime(x-1)) } twinu(n) = /* The n-th upper twin prime. */ { local(c, x); c=0; x=1; while(c<n, if(isprime(prime(x)+2), c++); x++; ); return(prime(x)) }
CROSSREFS
Sequence in context: A126911 A223408 A261807 * A235940 A103071 A264296
KEYWORD
nonn
AUTHOR
Cino Hilliard, Dec 03 2007
STATUS
approved