login
A135283
Sum of staircase twin primes according to the rule: top + bottom + next top.
3
13, 23, 41, 65, 101, 143, 191, 245, 311, 353, 425, 479, 551, 581, 623, 695, 749, 821, 875, 971, 1115, 1271, 1325, 1445, 1613, 1739, 1817, 1877, 1943, 2129, 2441, 2471, 2513, 2597, 2783, 3071, 3113, 3161, 3215, 3335, 3533, 3737, 3845, 3881, 3923, 4067
OFFSET
1,1
COMMENTS
We list the twin primes in staircase fashion as follows.
3
5_5
__7_11
____13_17
_______19_29
__________31_41
_____________.._..
________________tu(n)_tl(n)
______________________tu(n+1)
...
where tl(n) = n-th lower twin prime, tu(n) = n-th upper twin prime. Then a(n) = tl(n) + tu(n) + tl(n+1).
FORMULA
a(n) = A054735(n)+A001359(n+1). - R. J. Mathar, Sep 10 2016
PROG
(PARI) g(n) = for(x=1, n, y=twinu(x)+twinl(x) + twinl(x+1); print1(y", ")) twinl(n) = / *The n-th lower twin prime. */ { local(c, x); c=0; x=1; while(c<n, if(ispseudoprime(prime(x)+2), c++); x++; ); return(prime(x-1)) } twinu(n) = /* The n-th upper twin prime. */ { local(c, x); c=0; x=1; while(c<n, if(isprime(prime(x)+2), c++); x++; ); return(prime(x)) }
CROSSREFS
Sequence in context: A164407 A259216 A339867 * A225519 A213655 A119488
KEYWORD
nonn
AUTHOR
Cino Hilliard, Dec 02 2007
STATUS
approved