

A135281


A triangular sequence based on a two sequence lower triangular matrix. a(n)=(1)^n*(n1)!; b[n]=(n1)!; M(i,j)={{a(i),b(j)},{b(j),a(i+1)}}; a0(i,j)=Det[M(i,j)]; This method gives an tridiagonal matrix effect to a lower triangular matrix base.


0



1, 1, 2, 2, 5, 3, 18, 39, 23, 4, 1152, 2064, 872, 119, 5, 720000, 1122000, 331400, 26755, 719, 6, 5598720000, 7985952000, 1768046400, 84475980, 1128024, 5039, 7, 658683809280000, 887001391584000, 157639245422400, 4880494582740, 33169857336, 63204617, 40319, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

(n+2) factor is added to get the Integer result instead of a rational result in the polynomials.


LINKS

Table of n, a(n) for n=1..36.


FORMULA

a(n)=(1)^n*(n1)!; b[n]=(n1)!; m(i,j)=If[i > j, (1)^(i + j)*((a[j + 1]*a[j + 2]  b[i + 1]^2)/(n + 1)!)/(j!*(i  j)!), 0] t(n,m)=(n+2)*Coefficients of Characteristic polynomials of inverse of m(i,j)


EXAMPLE

{1},
{1, 2},
{2, 5, 3},
{18, 39, 23, 4},
{1152, 2064, 872,119, 5},
{720000, 1122000, 331400, 26755, 719, 6},
{5598720000, 7985952000, 1768046400, 84475980,1128024, 5039, 7},


CROSSREFS

Sequence in context: A322786 A184243 A356891 * A068465 A217876 A209771
Adjacent sequences: A135278 A135279 A135280 * A135282 A135283 A135284


KEYWORD

uned,sign


AUTHOR

Roger L. Bagula, Feb 15 2008


STATUS

approved



