login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135281 A triangular sequence based on a two sequence lower triangular matrix. a(n)=(-1)^n*(n-1)!; b[n]=(n-1)!; M(i,j)={{a(i),b(j)},{b(j),a(i+1)}}; a0(i,j)=Det[M(i,j)]; This method gives an tridiagonal matrix effect to a lower triangular matrix base. 0
1, -1, -2, 2, 5, 3, -18, -39, -23, -4, 1152, 2064, 872, 119, 5, -720000, -1122000, -331400, -26755, -719, -6, 5598720000, 7985952000, 1768046400, 84475980, 1128024, 5039, 7, -658683809280000, -887001391584000, -157639245422400, -4880494582740, -33169857336, -63204617, -40319, -8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

(n+2) factor is added to get the Integer result instead of a rational result in the polynomials.

LINKS

Table of n, a(n) for n=1..36.

FORMULA

a(n)=(-1)^n*(n-1)!; b[n]=(n-1)!; m(i,j)=If[i > j, (-1)^(i + j)*((a[j + 1]*a[j + 2] - b[i + 1]^2)/(n + 1)!)/(j!*(i - j)!), 0] t(n,m)=(n+2)*Coefficients of Characteristic polynomials of inverse of m(i,j)

EXAMPLE

{1},

{-1, -2},

{2, 5, 3},

{-18, -39, -23, -4},

{1152, 2064, 872,119, 5},

{-720000, -1122000, -331400, -26755, -719, -6},

{5598720000, 7985952000, 1768046400, 84475980,1128024, 5039, 7},

CROSSREFS

Sequence in context: A147524 A113177 A184243 * A068465 A217876 A209771

Adjacent sequences:  A135278 A135279 A135280 * A135282 A135283 A135284

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula, Feb 15 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 27 16:49 EDT 2017. Contains 287207 sequences.