

A135277


a(n) = prime(2n1) + prime(2n) + prime(2n+1).


1



10, 23, 41, 59, 83, 109, 131, 159, 187, 211, 235, 269, 301, 319, 349, 395, 425, 457, 487, 519, 551, 581, 607, 661, 689, 713, 749, 789, 817, 841, 883, 931, 961, 1015, 1049, 1079, 1119, 1151, 1187, 1229, 1271, 1303, 1331, 1367, 1391, 1433, 1477, 1511, 1553, 1611
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Original name was: Sum of staircase primes according to the rule: bottom + top + next top.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000


FORMULA

We list the primes in staircase fashion as in A135274. The right diagonal, RD(n), is the set of top primes and the left diagonal, LD(n), is the set of bottom primes. Then a(n) = LD(n+1) + RD(n) + RD(n+2).
a(n) = A034961(2*n1).  R. J. Mathar, Sep 10 2016


MATHEMATICA

Table[Prime[n + 1] + Prime[n] + Prime[n + 2], {n, 1, 50}][[;; ;; 2]] (* G. C. Greubel, Oct 08 2016 *)


PROG

(PARI) g(n) = forstep(x=1, n, 2, y=prime(x+1) + prime(x) + prime(x+2); print1(y", "))
(PARI) a(n) = prime(2*n1) + prime(2*n) + prime(2*n+1) \\ Charles R Greathouse IV, Oct 08 2016
(Python)
from sympy import prime
def a(n): return prime(2*n1) + prime(2*n) + prime(2*n+1)
print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Oct 23 2021


CROSSREFS

Cf. A034961, A135274.
Sequence in context: A275238 A140674 A072245 * A156202 A266080 A316093
Adjacent sequences: A135274 A135275 A135276 * A135278 A135279 A135280


KEYWORD

nonn,easy


AUTHOR

Cino Hilliard, Dec 02 2007


EXTENSIONS

New name from Charles R Greathouse IV, Oct 08 2016


STATUS

approved



