login
A135182
p^5 + p^3 + p^2. Exponents are prime numbers and p = prime(n).
1
44, 279, 3275, 17199, 162503, 373659, 1425059, 2483319, 6449039, 20536379, 28659903, 69395979, 115926803, 147089799, 229451039, 418347179, 715133159, 844827003, 1350430359, 1804592303, 2073465939, 3077555679, 3939619319, 5584772339, 8588262339, 10511141003, 11593844079, 14026753799, 15387546459
OFFSET
1,1
LINKS
FORMULA
p=A000040(n): a(n)= p^5 + p^3 + p^2 = A001248(n)+A030078(n)+A050997(n).
EXAMPLE
a(4)=17199 because the 4th prime number is 7, 7^5=16807, 7^3=343, 7^2=49 and 16807+343+49=17199.
MATHEMATICA
#^5 + #^3 + #^2&/@Prime[Range[50]] (* Vincenzo Librandi, May 22 2014 *)
PROG
(Magma)[p^5+p^3+p^2: p in PrimesUpTo(4200)]; // Vincenzo Librandi, Dec 14 2010
CROSSREFS
Sequence in context: A098826 A160284 A060836 * A094794 A001689 A306937
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 25 2007
EXTENSIONS
More terms from Vincenzo Librandi, Dec 14 2010
STATUS
approved