login
A135170
Primes equal to a sum c1+c2 of two consecutive composite numbers such that lpf(c1)-spf(c1)+lpf(c2)-spf(c2) from their largest and smallest prime factors is prime.
3
19, 29, 31, 41, 43, 53, 67, 71, 79, 89, 101, 109, 131, 149, 151, 173, 197, 199, 233, 239, 241, 251, 269, 271, 283, 307, 311, 317, 331, 337, 349, 367, 401, 419, 439, 449, 461, 487, 491, 499, 509, 521, 593, 599, 617, 641, 647, 683, 691, 727, 739, 751, 769, 809
OFFSET
1,1
FORMULA
{A060254(j): A002808(i)+A002808(i+1)=A060254(j) and A111426(i)+A111426(i+1) in A000040}. Subsequence of A060254. - R. J. Mathar, Feb 19 2008
MAPLE
A002808 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A002808(n-1)+1 do if not isprime(a) then RETURN(a) ; fi ; od: fi ; end:
isA060254 := proc(n) local i, sComp ; if isprime(n) then for i from 1 do sComp := A002808(i)+A002808(i+1) ; if sComp = n then RETURN(i); elif sComp > n then RETURN(-1) ; fi ; od: else -1 ; fi ; end:
A046665 := proc(n) local a, ifs ; a := 0 ; ifs := seq(op(1, i), i=ifactors(n)[2]) ; max(ifs)-min(ifs) ; end:
A111426 := proc(n) A046665(A002808(n)) ; end:
isA135170 := proc(p) local i ; i := isA060254(p) ; if i > 0 then A111426(i) + A111426(i+1) ; isprime(%) ; else false ; fi ; end:
for n from 1 to 300 do p := ithprime(n) ; if isA135170(p) then printf("%d, ", p) ; fi ; od: # R. J. Mathar, Feb 19 2008
CROSSREFS
Cf. A111426.
Sequence in context: A254330 A052260 A067833 * A173959 A370139 A139539
KEYWORD
nonn
AUTHOR
Giovanni Teofilatto, Feb 14 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, Feb 19 2008
More precise definition by R. J. Mathar, Sep 17 2009
STATUS
approved