OFFSET
1,3
REFERENCES
B. Cloitre, Binomial recursions, Pi and log2, in preparation 2007.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..400
FORMULA
Let z(1) = x and z(n) = 1 + Sum_{k=1..n-1} ( (3 + binomial(n,k))*z(k)) ), then z(n) = p(n)*x + q(n).
Limit_{n->oo} p(n)/q(n) = (15*Pi - 22)/(52 - 15*Pi) = 5.1524450418835554775446337...
a(n) ~ 2 * (52 - 15*Pi) * n^(3/2) * n! / (225 * sqrt(Pi) * log(2)^(n + 5/2)). - Vaclav Kotesovec, Nov 25 2020
E.g.f.: ((-24 + 44*exp(x) - 46*exp(2*x))/(2 - exp(x))^2 - 15*x + exp(5*x/2)*(52 + 15*Pi - 60*arcsin(exp(x/2)/sqrt(2))) /(2*(2 - exp(x))^(5/2)))/75. - Vaclav Kotesovec, Nov 25 2020
MATHEMATICA
z[1] := x; z[n_] := 1 + Sum[(3 + Binomial[n, k])*z[k], {k, 1, n - 1}]; Table[
Coefficient[z[n], x, 0], {n, 1, 10}] (* G. C. Greubel, Sep 28 2016 *)
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(3 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x, 0], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[CoefficientList[Series[((-24 + 44*E^x - 46*E^(2*x))/(2 - E^x)^2 - 15*x + E^(5*x/2)*(52 + 15*Pi - 60*ArcSin[E^(x/2)/Sqrt[2]])/(2*(2 - E^x)^(5/2)))/75, {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 25 2020 *)
PROG
(PARI) r=1; s=3; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 20 2007
EXTENSIONS
More terms from Vaclav Kotesovec, Nov 25 2020
STATUS
approved