The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135136 a(n) = floor(S2(n)/2) mod 2, where S2(n) is the binary weight of n. 3
 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS A generalized Thue Morse sequence. A class of generalized Thue-Morse sequences: Let F(t) be an integer function, m,k integers. Let Sk(n) be sum of digits of n; n in base-k. Then a(n)= F(Sk(n)) mod m is a generalized Thue-Morse sequence. Thue-Morse sequence has F(t)=t (identity function), S2(n), m=2,k=2. Interesting properties have sequences where F(Sk(n))=floor(Q*Sk(n)); Q is a positive rational number; a(n)=floor(Q*Sk(n)) mod m. Another interesting sequences are a(n)=(n*Sk(n)) mod m; a(n)=(n+Sk(n)) mod m. REFERENCES J. P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Ricardo Astudillo, On a class of Thue-Morse type sequences, Journal of Integer Sequences, Vol. 6 (2003), Article 03.4.2 R. Bacher and R. Chapman, Symmetric Pascal matrices modulo p, European J. Combin. 25 (2004), 459-473. MATHEMATICA Table[Mod[Floor[(Plus @@ IntegerDigits[n, 2])/2], 2], {n, 0, 90}] (* Stefan Steinerberger, Feb 14 2008 *) CROSSREFS Cf. A010060. Sequence in context: A093385 A350866 A252743 * A137331 A093386 A219098 Adjacent sequences: A135133 A135134 A135135 * A135137 A135138 A135139 KEYWORD nonn AUTHOR Ctibor O. Zizka, Feb 13 2008 EXTENSIONS More terms from Stefan Steinerberger, Feb 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 19:19 EST 2023. Contains 360044 sequences. (Running on oeis4.)