|
|
A135136
|
|
a(n) = floor(S2(n)/2) mod 2, where S2(n) is the binary weight of n.
|
|
3
|
|
|
0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
A generalized Thue Morse sequence.
A class of generalized Thue-Morse sequences: Let F(t) be an integer function, m,k integers. Let Sk(n) be sum of digits of n; n in base-k. Then a(n)= F(Sk(n)) mod m is a generalized Thue-Morse sequence. Thue-Morse sequence has F(t)=t (identity function), S2(n), m=2,k=2. Interesting properties have sequences where F(Sk(n))=floor(Q*Sk(n)); Q is a positive rational number; a(n)=floor(Q*Sk(n)) mod m. Another interesting sequences are a(n)=(n*Sk(n)) mod m; a(n)=(n+Sk(n)) mod m.
|
|
REFERENCES
|
J. P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..10000
Ricardo Astudillo, On a class of Thue-Morse type sequences, Journal of Integer Sequences, Vol. 6 (2003), Article 03.4.2
R. Bacher and R. Chapman, Symmetric Pascal matrices modulo p, European J. Combin. 25 (2004), 459-473.
|
|
MATHEMATICA
|
Table[Mod[Floor[(Plus @@ IntegerDigits[n, 2])/2], 2], {n, 0, 90}] (* Stefan Steinerberger, Feb 14 2008 *)
|
|
CROSSREFS
|
Cf. A010060.
Sequence in context: A093385 A350866 A252743 * A137331 A093386 A219098
Adjacent sequences: A135133 A135134 A135135 * A135137 A135138 A135139
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ctibor O. Zizka, Feb 13 2008
|
|
EXTENSIONS
|
More terms from Stefan Steinerberger, Feb 14 2008
|
|
STATUS
|
approved
|
|
|
|