login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135091 A007318 * triangle M, where M = A002426 * 0^(n-k), 0<=k<=n. 3
1, 1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 4, 18, 28, 19, 1, 5, 30, 70, 95, 51, 1, 6, 45, 140, 285, 306, 141, 1, 7, 63, 245, 665, 1071, 987, 393, 1, 8, 84, 392, 1330, 2856, 3948, 3144, 1107, 1, 9, 108, 588, 2394, 6426, 11844, 14148, 9963, 3139 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Right border = A002426. Row sums = A000984: (1, 2, 6, 20, 70, 252,...).

The n-th row of this triangle are the coefficients of the polynomial: p := 1/Pi*int((1+t-2*t*cos(s))^n, s=0..Pi); Pi / 1 | n p := ---- | (1 + t - 2 t cos(s)) ds Pi | / 0 for example n=5 then 4 2 3 p = 19 t + 18 t + 28 t + 4 t + 1 [From Theodore Kolokolnikov, Oct 09 2010]

LINKS

Table of n, a(n) for n=0..54.

FORMULA

A007318 * triangle M, where M = A002426 * 0^(n-k), 0<=k<=n; i.e. M = an infinite lower triangular matrix with A002426 as the right border and the rest zeros.

O.g.f. appears to be

1/sqrt(1-t*(1-x))*1/sqrt(1-t*(1+3*x)) = 1+(1+x)*t+(1+2*x+3*x^2)*t^2+....

See A098473.

EXAMPLE

First few rows of the triangle are:

1;

1, 1;

1, 2, 3;

1, 3, 9, 7;

1, 4, 18, 28, 19;

1, 5, 30, 70, 95, 51;

1, 6, 45, 140, 285, 306, 141;

1, 7, 63, 245, 665, 1071, 987, 393;

...

CROSSREFS

Cf. A002426, A000984, A098473.

Sequence in context: A208330 A152440 A134319 * A171150 A111589 A259760

Adjacent sequences:  A135088 A135089 A135090 * A135092 A135093 A135094

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, Nov 18 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 01:36 EDT 2018. Contains 316518 sequences. (Running on oeis4.)