login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135063 Define the sequence {b_n(m)} by b_n(0)=0; b_n(m) = the number of positive divisors of (b_n(m-1)+n), for all m >= 1. Then a(n) is the smallest positive integer such that b_n(m) = b_n(m+a(n)) for all m > some positive integer. 2
1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 4, 1, 3, 1, 3, 1, 2, 2, 1, 4, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 1, 2, 2, 5, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 4, 3, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 2, 5, 1, 1, 2, 2, 1, 3, 1, 1, 3, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

{b_7(m)} is 0,2,3,4,2,3,4,..., with (2,3,4) repeating thereafter. So a(7) = 3, the length of the repeating subsequence (2,3,4).

MAPLE

b := proc(n, m) option remember; if m =0 then 0; else numtheory[tau]( procname(n, m-1)+n); end if; end proc:

A135063 := proc(n) bseq := [] ; for m from 0 do bs := b(n, m) ; if member(bs, bseq, 'w') then return 1+nops(bseq)-w ; else bseq := [op(bseq), bs] ; end if; end do: end proc: seq(A135063(n), n=1..120) ; # R. J. Mathar, Aug 09 2010

CROSSREFS

Cf. A135062.

Sequence in context: A129265 A030358 A118914 * A124010 A212171 A196228

Adjacent sequences:  A135060 A135061 A135062 * A135064 A135065 A135066

KEYWORD

nonn

AUTHOR

Leroy Quet, Nov 15 2007

EXTENSIONS

Terms beyond a(12) from R. J. Mathar, Aug 09 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 22:12 EDT 2019. Contains 322328 sequences. (Running on oeis4.)