

A135062


Define the sequence {b_n(m)} by b_n(0)=1; b_n(m) = the number of positive divisors of (b_n(m1)+n), for all m >= 1. Then a(n) is the smallest positive integer such that b_n(m) = b_n(m+a(n)) for all m > some positive integer.


1



1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..11.


EXAMPLE

{b_8(m)} is 1,3,2,4,6,4,6,4,6,..., with (4,6) repeating thereafter. So a(8) = 2, the length of the repeating subsequence (4,6).


CROSSREFS

Cf. A135063.
Sequence in context: A034807 A275111 A182961 * A088428 A025838 A285813
Adjacent sequences: A135059 A135060 A135061 * A135063 A135064 A135065


KEYWORD

more,nonn


AUTHOR

Leroy Quet, Nov 15 2007


STATUS

approved



