login
a(n) = -a(n-1) + 2a(n-2) - a(n-3), with a(0) = 0, a(1) = 1, a(2) = -3.
1

%I #10 Sep 17 2016 00:28:34

%S 0,1,-3,5,-12,25,-54,116,-249,535,-1149,2468,-5301,11386,-24456,52529,

%T -112827,242341,-520524,1118033,-2401422,5158012,-11078889,23796335,

%U -51112125,109783684,-235804269,506483762,-1087875984,2336647777

%N a(n) = -a(n-1) + 2a(n-2) - a(n-3), with a(0) = 0, a(1) = 1, a(2) = -3.

%C Sequence is identical to its signed second differences less first 3 terms.-

%C _R. J. Mathar_, May 17 2009

%H G. C. Greubel, <a href="/A135019/b135019.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,2,-1).

%F From _R. J. Mathar_, May 17 2009: (Start)

%F a(n)*(-1)^(n+1) = A002478(n-1) + 2*A002478(n-2).

%F G.f.: x*(1 - 2*x)/(1 + x - 2*x^2 + x^3). (End)

%K sign

%O 0,3

%A _Paul Curtz_, Feb 10 2008

%E More terms from _R. J. Mathar_, May 17 2009