|
|
A135002
|
|
Decimal expansion of 2/e.
|
|
7
|
|
|
7, 3, 5, 7, 5, 8, 8, 8, 2, 3, 4, 2, 8, 8, 4, 6, 4, 3, 1, 9, 1, 0, 4, 7, 5, 4, 0, 3, 2, 2, 9, 2, 1, 7, 3, 4, 8, 9, 1, 6, 2, 2, 2, 6, 2, 0, 6, 3, 5, 3, 5, 6, 6, 9, 0, 1, 5, 6, 7, 3, 6, 0, 3, 3, 9, 4, 9, 2, 2, 9, 9, 1, 4, 8, 9, 7, 9, 9, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
From Johannes W. Meijer, Jun 27 2016: (Start)
This constant is related to the values of zeta(2*n-1) of the Riemann zeta function and the Euler Mascheroni constant gamma. If we define Z(n) = (1/n) * (sum(zeta(2*n-2*k-1) * Z(k), k=0..n-2) + gamma * Z(n-1)), with Z(0) = 1, then limit(Z(n), n -> infinity) = 2/exp(1).
Similar formulas appear in A090998 and A112302.
The structure of the n! * Z(n) formulas leads to the multinomial coefficients A036039. (End).
|
|
LINKS
|
Table of n, a(n) for n=0..78.
Index entries for transcendental numbers
|
|
FORMULA
|
Integral of log x from x = 1/e to e. - Charles R Greathouse IV, Apr 16 2015
Equals lim_{k->0} 2*(1 - k)^(1/k). - Ilya Gutkovskiy, Jun 27 2016
Equals Sum_{i>=0} ((-1)^i)(1-i)/i!. - Maciej Kaniewski, Sep 10 2017
Equals Sum_{i>=0} ((-1)^i)(i^2+2)/i!. - Maciej Kaniewski, Sep 12 2017
From Peter Bala, Mar 21 2022: (Start)
2/e = Integral_{x = 1..oo} (2*x/(1+x))^n*(x^2+x+1-n)/x^2*exp(-x) dx;
2/e = - Integral_{x = 0..1} (2*x/(1+x))^n*(x^2+x+1-n)/x^2*exp(-x) dx, both valid for n >= 2. (End)
|
|
EXAMPLE
|
0.735758882342... = 2*A068985.
|
|
MAPLE
|
evalf(2/exp(1)) ; # R. J. Mathar, Jul 14 2013
|
|
MATHEMATICA
|
RealDigits[2/E, 10, 120][[1]] (* Harvey P. Dale, Dec 25 2013 *)
|
|
PROG
|
(PARI) 2*exp(-1) \\ Charles R Greathouse IV, Apr 16 2015
|
|
CROSSREFS
|
Cf. A036039, A068985, A112302, A090998.
Sequence in context: A213085 A119714 A154889 * A319531 A175452 A084714
Adjacent sequences: A134999 A135000 A135001 * A135003 A135004 A135005
|
|
KEYWORD
|
nonn,cons,changed
|
|
AUTHOR
|
Omar E. Pol, Nov 15 2007
|
|
STATUS
|
approved
|
|
|
|