This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134996 Dihedral calculator primes: p, p upside down, p in a mirror, p upside-down-and-in-a-mirror are all primes. 4
 2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081, 188011, 188801, 1008001, 1022201, 1028011, 1055501, 1058011, 1082801, 1085801, 1088081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The digits of a(n) are restricted to 0, 1, 2, 5, 8. - Ivan N. Ianakiev, Oct 08 2015 The first term containing all the possible digits is 108225151. There are 2958 such terms up to 10^12, the last one in this range being 188885250551. - Giovanni Resta, Oct 08 2015 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..7174 C. K. Caldwell, The Prime Glossary, Dihedral Prime Eric Weisstein's World of Mathematics, Dihedral Prime. EXAMPLE 120121 is such a number because 120121, 121021 (upside down), 151051 (mirror) and 150151 are all prime. (This is the smallest one in which all four numbers are distinct.) MATHEMATICA lst1={2, 5}; startQ[n_]:=First[IntegerDigits[n]]==1; subQ[n_]:=Module[{lst={0, 1, 2, 5, 8}}, SubsetQ[lst, Union[IntegerDigits[n]]]]; rev[n_]:=Reverse[IntegerDigits[n]]; updown[n_]:=FromDigits[rev[n]]; mirror[n_]:=FromDigits[rev[n]/.{2-> 5, 5-> 2}]; updownmirror[n_]:=FromDigits[rev[mirror[n]]]; lst2=Select[Range@188801, And[startQ[#], subQ[#], PrimeQ[#], PrimeQ[updown[#]], PrimeQ[mirror[#]], PrimeQ[updownmirror[#]]]&]; Join[lst1, lst2] (* Ivan N. Ianakiev, Oct 08 2015 *) CROSSREFS Cf. A038136, A048660, A048662. Sequence in context: A267527 A018847 A178318 * A134998 A078790 A158999 Adjacent sequences:  A134993 A134994 A134995 * A134997 A134998 A134999 KEYWORD nonn,base,nice AUTHOR Mike Keith (domnei(AT)aol.com) EXTENSIONS 5 added by Patrick Capelle, Feb 06 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.