login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134980 a(n) = Sum_{k=0..n} binomial(n,k)*n^(n-k)*A000110(k). 1

%I

%S 1,2,10,77,799,10427,163967,3017562,63625324,1512354975,40012800675,

%T 1166271373797,37134022033885,1282405154139046,47745103281852282,

%U 1906411492286148245,81267367663098939459,3683790958912910588623,176937226305157687076779

%N a(n) = Sum_{k=0..n} binomial(n,k)*n^(n-k)*A000110(k).

%C Main diagonal of array "The first r-Bell numbers" from r=0 and from n=0, p.3 of Mezo. First 7 rows and columns of array shown. [_Jonathan Vos Post_, Sep 25 2009]

%H Istvan Mezo, <a href="http://arxiv.org/abs/0909.4417">The r-Bell numbers</a>, Sep 24, 2008. [_Jonathan Vos Post_, Sep 25 2009]

%F a(n) = exp(-1)*Sum_{k>=0} (n+k)^n/k!.

%F E.g.f.: A(x) = exp(-1)*Sum_{k>=0} (1+k*x)^k/k!.

%F a(n) = Sum_{k=0..n} Stirling1(n,k)*A000110(n+k). [_Vladeta Jovovic_, Nov 08 2009]

%e From _Jonathan Vos Post_, Sep 25 2009: (Start)

%e The array begins:

%e ===================================================

%e .......|n=0|n=1|.n=2|.n=3.|..n=4.|...n=5.|....n=6.|

%e r=0....|.1.|.1.|..2.|...5.|...15.|....52.|....203.|

%e r=1....|.1.|.2.|..5.|..15.|...52.|...203.|....877.|

%e r=2....|.1.|.3.|.10.|..37.|..151.|...674.|...3263.|

%e r=3....|.1.|.4.|.17.|..77.|..372.|..1915.|..10481.|

%e r=4....|.1.|.5.|.26.|.141.|..799.|..4736.|..29371.|

%e r=5....|.1.|.6.|.37.|.235.|.1540.|.10427.|..73013.|

%e r=6....|.1.|.7.|.50.|.365.|.2727.|.20878.|.163967.|

%e ===================================================

%e (End)

%p with(combinat): a := n -> add(binomial(n, k)*n^(n-k)*bell(k), k=0..n):

%p 1, seq(a(n), n=1..20); # _Emeric Deutsch_, Mar 02 2008

%o (Sage)

%o def A134980(n):

%o return add(binomial(n, k)*n^(n-k)*bell_number(k) for k in (0..n))

%o [A134980(n) for n in (0..18)] # _Peter Luschny_, May 05 2013

%K easy,nonn

%O 0,2

%A _Vladeta Jovovic_, Feb 04 2008

%E More terms from _Emeric Deutsch_, Mar 02 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 25 23:11 EST 2014. Contains 250013 sequences.