|
|
A134980
|
|
a(n) = Sum_{k=0..n} binomial(n,k)*n^(n-k)*A000110(k).
|
|
8
|
|
|
1, 2, 10, 77, 799, 10427, 163967, 3017562, 63625324, 1512354975, 40012800675, 1166271373797, 37134022033885, 1282405154139046, 47745103281852282, 1906411492286148245, 81267367663098939459, 3683790958912910588623, 176937226305157687076779
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Main diagonal of array "The first r-Bell numbers", p.3 of Mezo, A108087. - Jonathan Vos Post, Sep 25 2009
Number of partitions of [2n] where at least n blocks contain their own index element. a(2) = 10: 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - Alois P. Heinz, Jan 07 2022
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..385
R. Jakimczuk, Successive Derivatives and Integer Sequences, J. Int. Seq. 14 (2011) # 11.7.3.
Istvan Mezo, The r-Bell numbers, arXiv:0909.4417 [math.CO], 2009-2010.
I. Mezo, The r-Bell numbers, J. Int. Seq. 14 (2011) # 11.1.1.
|
|
FORMULA
|
a(n) = exp(-1)*Sum_{k>=0} (n+k)^n/k!.
E.g.f.: A(x) = exp(-1)*Sum_{k>=0} (1+k*x)^k/k!.
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000110(n+k). - Vladeta Jovovic, Nov 08 2009
a(n) = n! * [x^n] exp(exp(x) + n*x - 1). - Ilya Gutkovskiy, Sep 26 2017
a(n) ~ exp(exp(1) - 1) * n^n. - Vaclav Kotesovec, Jun 09 2020
|
|
MAPLE
|
with(combinat): a:= n-> add(binomial(n, k)*n^(n-k)*bell(k), k=0..n):
seq(a(n), n=0..20); # Emeric Deutsch, Mar 02 2008
# Alternate:
g:= proc(n) local S;
S:= series(exp(exp(x)+n*x-1), x, n+1);
n!*coeff(S, x, n);
end proc:
map(g, [$0..30]); # Robert Israel, Sep 29 2017
# third Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1,
k*b(n-1, k)+ b(n-1, k+1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
|
|
MATHEMATICA
|
a[n_] := n!*SeriesCoefficient[Exp[Exp[x] + n*x - 1], {x, 0, n}]; Array[a, 19, 0] (* Jean-François Alcover, Sep 28 2017, after Ilya Gutkovskiy *)
Join[{1}, Table[Sum[Binomial[n, k]*n^(n-k)*BellB[k], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jun 09 2020 *)
|
|
PROG
|
(Sage)
def A134980(n):
return add(binomial(n, k)*n^(n-k)*bell_number(k) for k in (0..n))
[A134980(n) for n in (0..18)] # Peter Luschny, May 05 2013
|
|
CROSSREFS
|
Main diagonal of A108087.
Cf. A000110.
Sequence in context: A245307 A292632 A095789 * A355471 A240599 A212381
Adjacent sequences: A134977 A134978 A134979 * A134981 A134982 A134983
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Vladeta Jovovic, Feb 04 2008
|
|
EXTENSIONS
|
More terms from Emeric Deutsch, Mar 02 2008
|
|
STATUS
|
approved
|
|
|
|