login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134977 Period 6: repeat [1, 4, 2, 3, 0, 2]. 2
1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2, 1, 4, 2, 3, 0, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Northwest diagonal sums of A134658, omitting row 0.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).

FORMULA

O.g.f.: -1/(x+1)-2/(x-1)+x/(x^2-x+1). a(n) = 2-(-1)^n+A010892(n-1). - R. J. Mathar, Feb 08 2008

a(n) = (1/30)*{9*(n mod 6)-6*[(n+1) mod 6]+19*[(n+2) mod 6]-[(n+3) mod 6]+14*[(n+4) mod 6]-11*[(n+5) mod 6]}, with n>=0. - Paolo P. Lava, Feb 11 2008

From Wesley Ivan Hurt, Jun 18 2016: (Start)

a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.

a(n) = (6-3*cos(n*Pi)+2*sqrt(3)*sin(n*Pi/3))/3. (End)

MAPLE

A134977:=n->[1, 4, 2, 3, 0, 2][(n mod 6)+1]: seq(A134977(n), n=0..100); # Wesley Ivan Hurt, Jun 18 2016

MATHEMATICA

Flatten[Table[{1, 4, 2, 3, 0, 2}, {20}]] (* Wesley Ivan Hurt, Jun 18 2016 *)

PadRight[{}, 100, {1, 4, 2, 3, 0, 2}] (* Vincenzo Librandi, Jun 19 2016 *)

PROG

(MAGMA) &cat[[1, 4, 2, 3, 0, 2]^^20]; // Wesley Ivan Hurt, Jun 18 2016

CROSSREFS

Cf. A010892, A119910, A130784, A131756, A134658.

Sequence in context: A096870 A261253 A328334 * A199081 A232462 A266141

Adjacent sequences:  A134974 A134975 A134976 * A134978 A134979 A134980

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Feb 04 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 02:04 EDT 2019. Contains 328106 sequences. (Running on oeis4.)