

A134888


E_8 numbers: a(n) = 2^(2*n) * 3^(3*n) * 5^n * 839^n. (Constants are prime numbers).


5



1, 453060, 205263363600, 92996619512616000, 42133048436385804960000, 19088798924588952795177600000, 8648371240774270953383163456000000, 3918231074345191198139776035375360000000, 1775193770542832324229206930587160601600000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The result of the exceptional Lie group E_8 calculation is a matrix with 453060 rows and columns. Size of the matrix.. = a(1) = 453060. Number of entries... = a(2) = 205263363600.


LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..100
The American Institute of Mathematics, Mathematicians Maps E_8.


FORMULA

a(n) = 2^(2*n) * 3^(3*n) * 5^n * 839^n.
O.g.f.: 1/(1453060*x).  R. J. Mathar, Nov 24 2007
a(n) = 453060^n.


EXAMPLE

a(1) = 453060 because 2^(2*1)=4, 3^(3*1)=27, 5^1=5, 839^1=839 and we can write 4*27*5*839 = 453060.
a(2) = 205263363600 because 2^(2*2)=16, 3^(3*2)=729, 5^2=25, 839^2=703921 and we can write 16*729*25*703921=205263363600.
a(1)^2 = a(2): 453060*453060 = 205263363600.


CROSSREFS

Cf. A064730, A134950, A134960, A135639.
Sequence in context: A209714 A203785 A134960 * A237867 A234427 A205024
Adjacent sequences: A134885 A134886 A134887 * A134889 A134890 A134891


KEYWORD

nonn


AUTHOR

Omar E. Pol, Nov 22 2007


EXTENSIONS

Terms a(5) and beyond from Andrew Howroyd, Feb 02 2020


STATUS

approved



