login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134885 Triangular sequence from polynomials that gives roots near 137. 0
1, 137, -1, -135, -137, 1, 134, 0, 137, -1, -133, 0, 0, -137, 1, 132, 0, 0, 0, 137, -1, -131, 0, 0, 0, 0, -137, 1, 130, 0, 0, 0, 0, 0, 137, -1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Alternative Mathematica code for larger polynomials: p[x_, n_] = (-1)^(n - 1)*(135 - n) + (-1)^(n - 1)*137*x^(n - 1) - (-1)^ n - 1)*x^n Table[p[x, n], {n, 2, 10}]

LINKS

Table of n, a(n) for n=1..36.

FORMULA

p(x,0)=1 p(x,1)=137-x p(x,n)=(-1)^(n-1)*(135-n)+(-1)^(n-1)*137*x^(n-1)-(-1)^(n-1)*x^n: n>2 a(m,n) = CoefficientList(p(x,n),x)

EXAMPLE

p[x,134]

gives:

-1 - 137 x^133 + x^134

Triangular sequence:

{1},

{137, -1},

{-135, -137, 1},

{134, 0, 137, -1},

{-133, 0, 0, -137, 1},

{132, 0, 0, 0, 137, -1},

{-131, 0, 0, 0, 0, -137, 1},

{130, 0, 0, 0, 0, 0, 137, -1}

MATHEMATICA

p[x_, n_] = (-1)^(n - 1)*(137 - n) + (-1)^(n - 1)*137*x^(n - 1) - (-1)^( n - 1)*x^n

a = Join[{1, 137 - x}, Table[p[x, n], {n, 2, 10}]]

c = Table[CoefficientList[a[[n]], x], {n, 1, Length[a]}]

Flatten[c]

CROSSREFS

Sequence in context: A233254 A001330 A091510 * A259680 A082726 A189998

Adjacent sequences:  A134882 A134883 A134884 * A134886 A134887 A134888

KEYWORD

uned,tabl,sign

AUTHOR

Roger L. Bagula, Jan 29 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 06:09 EST 2021. Contains 340416 sequences. (Running on oeis4.)