

A134876


Number of Proth primes: number of primes of the form 1 + k*2^n with k odd and k < 2^n.


1



1, 2, 1, 3, 4, 8, 18, 23, 44, 73, 142, 277, 484, 871, 1644, 3060, 5851, 10917, 20776, 39263, 74752, 142521, 271223, 520242, 996486, 1916486, 3686628, 7103236, 13702428, 26469008, 51193351, 99099882, 192044541, 372559804, 723389144
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The ratio a(n+1)/a(n) is about 2 * n /(n+1).  Corrected by Thomas Ordowski, Oct 17 2014
Conjecture: a(n) ~ C * 2^n / n, where C = 1/(2 log 2) = 0.7213475...  Thomas Ordowski, Oct 17 2014


LINKS

Table of n, a(n) for n=1..35.
Eric Weisstein's World of Mathematics, Proth's Theorem


EXAMPLE

a(1)=1 because 3 is the only Proth prime for n=1.
a(2)=2 because 5 and 13 are the only primes for n=2.
a(3)=1 because 41 is the only prime for n=3.


MATHEMATICA

Table[cnt=0; Do[If[PrimeQ[1+k*2^n], cnt++ ], {k, 1, 2^n, 2}]; cnt, {n, 20}]]


CROSSREFS

Cf. A080076.
Sequence in context: A267551 A055391 A177940 * A019612 A007444 A166476
Adjacent sequences: A134873 A134874 A134875 * A134877 A134878 A134879


KEYWORD

nonn


AUTHOR

T. D. Noe, Nov 17 2007


EXTENSIONS

More terms from Charles R Greathouse IV, Mar 18 2010


STATUS

approved



