login
A134835
Let {b_n(m)} be a sequence defined by b_n(0)=0, b_n(m) is the largest prime dividing (b_n(m-1) + n). Then a(n) is the smallest positive integer such that b_n(m + a(n)) = b_n(m), for all integers m that are greater than some positive integer M.
1
1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 22, 1, 5, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 6, 1, 1, 1, 6, 1, 1, 1, 1, 1, 10, 1, 1, 1, 8, 1, 1, 1, 1, 1, 7, 1, 9, 1, 1, 1, 1, 1, 1, 1, 5, 14, 1, 1, 6, 1, 1, 1
OFFSET
2,3
EXAMPLE
Sequence {b_8(m)} is 0, 2, 5, 13, 7, 5, 13, 7, ... (5, 13, 7) repeats. So a(8) = 3, the length of the cycle in {b_8(m)}.
PROG
(PARI) a(n) = my(b, k, v=List([0])); until(k<#v, k=1; listput(v, b=vecmax(factor(b+n)[, 1])); until(v[k]==b||k==#v, k++)); #v-k; \\ Jinyuan Wang, Aug 22 2021
CROSSREFS
Sequence in context: A348986 A199393 A010327 * A321592 A031278 A010328
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 12 2007
EXTENSIONS
More terms from Jinyuan Wang, Aug 22 2021
STATUS
approved