login
A134803
Numbers n such that the sum of all numbers of the same parity <= n is equal to the sum of numbers of the opposite parity from n+1 to n+m, where m is odd and > 1.
1
3, 8, 119, 288, 4059, 9800
OFFSET
1,1
EXAMPLE
3 -> 1+3 = 4 = 4
8 -> 2+4+6+8 = 20 = 9+11
119 -> 1+3+5+...+119 = 3600 = 120+122+...+168
MAPLE
P:=proc(n) local a, k, i, s1, s2; for i from 1 by 1 to n do if 2*trunc(i/2)=i then s1:=sum('2*k', 'k'=1..(i/2)); else s1:=sum('2*k-1', 'k'=1..(i+1)/2); fi; a:=1; s2:=i+1; while s1>s2 do a:=a+2; s2:=s2+i+a; od; if s1=s2 then lprint(i, s1); fi; od; end: P(10000);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved