login
A134680
a(n) = length (or lifetime) of the meta-Fibonacci sequence {f(1) = ... = f(n) = 1; f(k)=f(k-f(k-1))+f(k-f(k-n))} if that sequence is only defined for finitely many terms, or 0 if that sequence is infinite.
5
6, 0, 164, 0, 60, 2354, 282, 1336, 100, 1254, 366, 419, 498, 483, 778, 1204, 292, 373, 845, 838, 1118, 2120, 815, 2616, 686, 1195, 745, 1112, 2132, 1588, 754, 1227, 1279, 1661, 716, 2275, 784, 2341, 1874, 1463, 1122, 2800, 1350, 1613, 2279, 1557, 1532
OFFSET
1,1
COMMENTS
Such a sequence has finite length when the k-th term becomes greater than k.
The term a(2) = 0 is only conjectural - see A005185. a(4) = 0 is a theorem of Balamohan et al. (2007). - N. J. A. Sloane, Nov 07 2007, Apr 18 2014.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
B. Balamohan, A. Kuznetsov and S. Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Sequences, Vol. 10 (2007), #07.7.1.
D. R. Hofstadter, Curious patterns and non-patterns in a family of meta-Fibonacci recursions, Lecture in Doron Zeilberger's Experimental Mathematics Seminar, Rutgers University, April 10 2014; Part 1, Part 2.
D. R. Hofstadter, Graph of first 21500 terms.
EXAMPLE
a(1) = 6: the f-sequence is defined by f(1) = 1, f(n) = 2f(n-f(n-1)), which gives 1,2,2,4,2,8 but f(7) = 2f(-1) is undefined, so the length is 6.
MATHEMATICA
Table[Clear[a]; a[n_] := a[n] = If[n<=k, 1, a[n-a[n-1]]+a[n-a[n-k]]]; t={1}; n=2; While[n<10000 && a[n-1]<n, AppendTo[t, a[n]]; n++ ]; len=Length[t]; If[len==9999, 0, len], {k, 100}]
CROSSREFS
Cf. A005185, A046700, A063882, A132172, A134679 (sequences for n=2..6).
See A240810 for another version.
A diagonal of the triangle in A240813.
Sequence in context: A052679 A266218 A240818 * A362794 A336303 A111372
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 06 2007
STATUS
approved