The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134645 Number of 2n X 3n (0,1,2)-matrices with every row sum 3 and column sum 2. 2

%I

%S 7,16260,747558000,250071339672000,369820640830881240000,

%T 1796185853884657144990080000,23511842995969107700302647865600000,

%U 720289186703359375552628986978410240000000,46455761324619133018320834819622638940550400000000,5809177204262302555518772962193269714031251010176000000000

%N Number of 2n X 3n (0,1,2)-matrices with every row sum 3 and column sum 2.

%D Zhonghua Tan, Shanzhen Gao, Kenneth Mathies, Joshua Fallon, Counting (0,1,2)-Matrices, Congressus Numeratium, December 2008.

%F Let t(m,n)=6^{-m} sum_{i=0}^{m}frac{3^{i}m!n!(2n-2i)!}{i!(m-i)!(n-i)!2^{n-i}}; then a(n) = t(2n,3n).

%F a(n) = (3n)!(2n)!288^(-n) * Sum_{i=0..2n} (6n-2i)!6^i/(i!(3n-i)!(2n-i)!). - _Shanzhen Gao_, Mar 02 2010

%e a(1) = 7:

%e 111 210 (6 ways)

%e 111 012

%p f:=proc(m,n) 6^(-m)*add( (3^i*m!*n!*(2*n-2*i)!)/ (i!*(m-i)!*(n-i)!*2^(n-i)), i=0..m); end;

%Y Cf. A000681, A134646.

%K nonn

%O 1,1

%A _Shanzhen Gao_, Nov 05 2007

%E Corrected, edited and extended with Maple program by R. H. Hardin and _N. J. A. Sloane_, Oct 18 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 17:49 EST 2022. Contains 358475 sequences. (Running on oeis4.)