login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134594 a(n) = n^2 + 10*n + 5: coefficients of the irrational part of (1 + sqrt(n))^5. 2

%I

%S 5,16,29,44,61,80,101,124,149,176,205,236,269,304,341,380,421,464,509,

%T 556,605,656,709,764,821,880,941,1004,1069,1136,1205,1276,1349,1424,

%U 1501,1580,1661,1744,1829,1916,2005,2096,2189,2284,2381,2480,2581,2684

%N a(n) = n^2 + 10*n + 5: coefficients of the irrational part of (1 + sqrt(n))^5.

%C (1+sqrt(n))^5 = (5*n^2 + 10*n + 1) + (n^2 + 10*n + 5)*sqrt(n). For coefficients of the rational part see A134593.

%H G. C. Greubel, <a href="/A134594/b134594.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = ((1+sqrt(n))^5 - (5*n^2 + 10*n + 1))/sqrt(n), for n > 0. [corrected by _Jon E. Schoenfield_, Nov 23 2018]

%F G.f.: (1+x)*(5-4*x)/(1-x)^3. - _R. J. Mathar_, Nov 14 2007

%F a(n) = 2*n + a(n-1) + 9 (with a(0)=5). - _Vincenzo Librandi_, Nov 23 2010

%F E.g.f.: (5 +11*x +x^2)*exp(x). - _G. C. Greubel_, Nov 23 2018

%t Table[(n^2 + 10n + 5), {n, 0, 50}]

%t LinearRecurrence[{3,-3,1}, {5,16,29}, 50] (* _G. C. Greubel_, Nov 23 2018 *)

%o (PARI) a(n)=n^2+10*n+5 \\ _Charles R Greathouse IV_, Jun 17 2017

%o (MAGMA) [n^2 +10*n +5: n in [0..50]]; // _G. C. Greubel_, Nov 23 2018

%o (Sage) [n^2 +10*n +5 for n in range(50)] # _G. C. Greubel_, Nov 23 2018

%o (GAP) List([0..50],n->n^2+10*n+5); # _Muniru A Asiru_, Nov 24 2018

%Y Cf. A134593.

%K nonn,easy

%O 0,1

%A _Artur Jasinski_, Nov 04 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 00:19 EST 2019. Contains 320237 sequences. (Running on oeis4.)