This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134594 a(n) = n^2 + 10*n + 5: coefficients of the irrational part of (1 + sqrt(n))^5. 2
 5, 16, 29, 44, 61, 80, 101, 124, 149, 176, 205, 236, 269, 304, 341, 380, 421, 464, 509, 556, 605, 656, 709, 764, 821, 880, 941, 1004, 1069, 1136, 1205, 1276, 1349, 1424, 1501, 1580, 1661, 1744, 1829, 1916, 2005, 2096, 2189, 2284, 2381, 2480, 2581, 2684 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS (1+sqrt(n))^5 = (5*n^2 + 10*n + 1) + (n^2 + 10*n + 5)*sqrt(n). For coefficients of the rational part see A134593. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = ((1+sqrt(n))^5 - (5*n^2 + 10*n + 1))/sqrt(n), for n > 0. [corrected by Jon E. Schoenfield, Nov 23 2018] G.f.: (1+x)*(5-4*x)/(1-x)^3. - R. J. Mathar, Nov 14 2007 a(n) = 2*n + a(n-1) + 9 (with a(0)=5). - Vincenzo Librandi, Nov 23 2010 E.g.f.: (5 +11*x +x^2)*exp(x). - G. C. Greubel, Nov 23 2018 MATHEMATICA Table[(n^2 + 10n + 5), {n, 0, 50}] LinearRecurrence[{3, -3, 1}, {5, 16, 29}, 50] (* G. C. Greubel, Nov 23 2018 *) PROG (PARI) a(n)=n^2+10*n+5 \\ Charles R Greathouse IV, Jun 17 2017 (MAGMA) [n^2 +10*n +5: n in [0..50]]; // G. C. Greubel, Nov 23 2018 (Sage) [n^2 +10*n +5 for n in range(50)] # G. C. Greubel, Nov 23 2018 (GAP) List([0..50], n->n^2+10*n+5); # Muniru A Asiru, Nov 24 2018 CROSSREFS Cf. A134593. Sequence in context: A063290 A299882 A212457 * A222535 A063076 A270805 Adjacent sequences:  A134591 A134592 A134593 * A134595 A134596 A134597 KEYWORD nonn,easy AUTHOR Artur Jasinski, Nov 04 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 05:11 EST 2019. Contains 319353 sequences. (Running on oeis4.)