login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134541 Triangle read by rows: A000012 * A054525 regarded as infinite lower triangular matrices. 6
1, 0, 1, -1, 1, 1, -1, 0, 1, 1, -2, 0, 1, 1, 1, -1, -1, 0, 1, 1, 1, -2, -1, 0, 1, 1, 1, 1, -2, -1, 0, 0, 1, 1, 1, 1, -2, -1, -1, 0, 1, 1, 1, 1, 1, -1, -2, -1, 0, 0, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,11

COMMENTS

Row sums = 1. Left border = A002321, the Mertens function. A134541 * [1,2,3,...] = A002088: (1, 2, 4, 6, 10, 12, 18, 22,...).

LINKS

Table of n, a(n) for n=1..55.

FORMULA

Recurrence: T(n, k) = If n >= k then If k = 1 then 1 - Sum_{i=1..n-1} T(n, k + i)/(i + 1)^(s - 1) else T(floor(n/k) else 1)) else 0). - Mats Granvik, Apr 17 2016

EXAMPLE

First few rows of the triangle are:

1;

0, 1;

-1, 1, 1;

-1, 0, 1, 1;

-2, 0, 1, 1, 1;

-1, -1, 0, 1, 1, 1;

-2, -1, 0, 1, 1, 1, 1;

-2, -1, 0, 0, 1, 1, 1, 1;

-2, -1, -1, 0, 1, 1, 1, 1, 1;

-1, -2, -1, 0, 0, 1, 1, 1, 1, 1;

...

MATHEMATICA

Clear[t, s, n, k, z, x]; z = 1; nn = 10; t[n_, k_] := t[n, k] = If[n >= k, If[k == 1, 1 - Sum[t[n, k + i]/(i + 1)^(s - 1), {i, 1, n - 1}], t[Floor[n/k], 1]], 0]; Flatten[Table[Table[Limit[t[n, k], s -> z], {k, 1, n}], {n, 1, nn}]] (* Mats Granvik, Jul 22 2012 *) (* updated Mats Granvik, Apr 10 2016 *)

CROSSREFS

Cf. A054525, A002321, A002088.

Matrix inverse of A176702. [Mats Granvik, Apr 24 2010]

Sequence in context: A056175 A325987 A105241 * A286627 A182071 A317992

Adjacent sequences:  A134538 A134539 A134540 * A134542 A134543 A134544

KEYWORD

tabl,sign

AUTHOR

Gary W. Adamson, Oct 31 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 11:09 EDT 2019. Contains 328216 sequences. (Running on oeis4.)