login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134530 Matrix log of triangle A111636, where A111636(n,k) = (2^k)^(n-k)*C(n,k) for n>=k>=0. 2
0, 1, 0, -1, 4, 0, 5, -12, 12, 0, -79, 160, -96, 32, 0, 3377, -6320, 3200, -640, 80, 0, -362431, 648384, -303360, 51200, -3840, 192, 0, 93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0, -56272471039, 95716705280, -41566486528, 6196822016, -362414080, 9175040, -114688, 1024, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..44.

FORMULA

T(n,k) = A134531(n-k)*(2^k)^(n-k)*C(n,k), where A134531 is column 0 and satisfies: G.f.: Sum_{n>=0} A134531(n)*x^n/[n!*2^(n*(n-1)/2)] = log(Sum_{n>=0}x^n/[n!*2^(n*(n-1)/2)]).

EXAMPLE

Triangle begins:

0,

1, 0;

-1, 4, 0;

5, -12, 12, 0;

-79, 160, -96, 32, 0;

3377, -6320, 3200, -640, 80, 0;

-362431, 648384, -303360, 51200, -3840, 192, 0;

93473345, -162369088, 72619008, -11325440, 716800, -21504, 448, 0; ...

Matrix exponentiation yields triangle A111636, which begins:

1;

1, 1;

1, 4, 1;

1, 12, 12, 1;

1, 32, 96, 32, 1;

1, 80, 640, 640, 80, 1; ...

PROG

(PARI) {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, 2^((c-1)*(r-c))*binomial(r-1, c-1))), L); L=sum(i=1, #M, -(M^0-M)^i/i); L[n+1, k+1]}

CROSSREFS

Cf. A134531 (column 0); related triangles: A111636, A117401; A011266.

Sequence in context: A064520 A267313 A108174 * A184365 A126813 A056141

Adjacent sequences:  A134527 A134528 A134529 * A134531 A134532 A134533

KEYWORD

sign,tabl

AUTHOR

Paul D. Hanna, Oct 30 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 19:30 EDT 2019. Contains 323597 sequences. (Running on oeis4.)