login
Primes of the form 24*k - 1.
11

%I #33 Jan 01 2023 04:17:49

%S 23,47,71,167,191,239,263,311,359,383,431,479,503,599,647,719,743,839,

%T 863,887,911,983,1031,1103,1151,1223,1319,1367,1439,1487,1511,1559,

%U 1583,1607,1823,1847,1871,2039,2063,2087,2111,2207,2351,2399,2423,2447,2543

%N Primes of the form 24*k - 1.

%C Corresponding values of k are in A131210.

%C Is this the same sequence as A141376?

%C Primes in A183010. - _Omar E. Pol_, Oct 08 2011

%C Inert rational primes in the fields Q(sqrt(-1)), Q(sqrt(-2)), Q(sqrt(-3)). - _Eyal Gruss_, Nov 30 2022

%H Muniru A Asiru, <a href="/A134517/b134517.txt">Table of n, a(n) for n = 1..5000</a>

%F a(n) = A183010(A131210(n)). - _Omar E. Pol_, Nov 04 2017

%p select(isprime,[seq(24*n-1,n=1..120)]); # _Muniru A Asiru_, Mar 04 2018

%t Select[Prime[Range[1000]],Mod[ #,24]==23&]

%t Select[24*Range[200]-1,PrimeQ] (* _Harvey P. Dale_, Jun 17 2018 *)

%o (GAP) Filtered(List([1..120],n->24*n-1),IsPrime); # _Muniru A Asiru_, Mar 04 2018

%o (PARI) lista(nn) = for(k=1, nn, if(isprime(p=24*k-1), print1(p", "))) \\ _Altug Alkan_, Mar 04 2018

%Y Cf. A131210, A183010.

%Y Intersection of A002145, A003627, A045355.

%K nonn

%O 1,1

%A _Zak Seidov_, Oct 29 2007