login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134512 Row sums of triangle A134511. 2
1, 1, 3, 4, 10, 14, 32, 46, 99, 145, 299, 444, 887, 1331, 2595, 3926, 7508, 11434, 21526, 32960, 61251, 94211, 173173, 267384, 486925, 754309, 1362627, 2116936, 3797374, 5914310, 10543724, 16458034, 29180067, 45638101, 80521055, 126159156, 221610563, 347769719, 608468451, 956238170, 1667040776 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Robert Israel, Table of n, a(n) for n = 0..1999

FORMULA

Empirical g.f.: (1-x^2)^2/((1+x-x^2)*(1-x-x^2)^2). - Robert Israel, Mar 02 2018

EXAMPLE

a(4) = 10 = sum of row 4 terms of triangle A134511: (5 + 0 + 4 + 0 + 1).

MAPLE

N:= 100: # for the first N terms

T128174:= Matrix(N, N, (i, j) -> `if`(j<=i, (i-j+1) mod 2, 0)):

T049310:= Matrix(N, N):

for i from 1 to N do

     P:= orthopoly[U](i-1, x/2);

     for j from 1 to i do

       T049310[i, j]:= abs(coeff(P, x, j-1))

     od

od:

convert(T049310 . (T128174 . Vector(N, 1)), list); # Robert Israel, Mar 02 2018

CROSSREFS

Cf. A134511.

Sequence in context: A071019 A173285 A025084 * A106523 A007068 A121720

Adjacent sequences:  A134509 A134510 A134511 * A134513 A134514 A134515

KEYWORD

nonn

AUTHOR

Gary W. Adamson, Oct 28 2007

EXTENSIONS

More terms from Robert Israel, Mar 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 12:49 EST 2018. Contains 318086 sequences. (Running on oeis4.)