login
A134481
Row sums of triangle A134480.
4
1, 5, 20, 50, 100, 175, 280, 420, 600, 825, 1100, 1430, 1820, 2275, 2800, 3400, 4080, 4845, 5700, 6650, 7700, 8855, 10120, 11500, 13000, 14625, 16380, 18270, 20300, 22475, 24800, 27280, 29920, 32725, 35700, 38850, 42180, 45695
OFFSET
0,2
COMMENTS
Binomial transform of [1, 4, 11, 4, 1, -1, 1, -1, 1, -1, ...]. Also, 1 followed by 5 * A000292, the tetrahedral numbers; i.e., 1, then 5 * (1, 4, 10, 25, 35, ...).
If Y is a 5-subset of an n-set X then, for n>=8, a(n-7) is the number of 4-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
FORMULA
a(n) = 5*binomial(n+2,3) for n>0. - Milan Janjic, Dec 28 2007
G.f.: 1 + 5*x / (1-x)^4. - R. J. Mathar, Apr 04 2012
a(n) = Sum_{i=0..n} (n+i)*(1+i) for n > 0. - Bruno Berselli, Dec 16 2013
E.g.f.: 1 + 5*exp(x)*x*(6 + 6*x + x^2)/6. - Stefano Spezia, Oct 09 2023
EXAMPLE
a(2) = 20 = sum of row 3 terms of triangle A134480: (9 + 7 + 4).
a(3) = 50 = (1, 3, 3, 1) dot (1, 4, 11, 4) = (1 + 12 + 33 + 4).
a(2) = 20 = 2*1 + 3*2 + 4*3; a(5) = 5*1 + 6*2 + 7*3 + 8*4 + 9*5 + 10*6. - Bruno Berselli, Dec 16 2013
MATHEMATICA
CoefficientList[Series[1+5x/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 29 2012 *)
PROG
(Magma) I:=[1, 5, 20, 50, 100]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
CROSSREFS
Sequence in context: A147488 A297569 A190094 * A358632 A062158 A034133
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Oct 27 2007
STATUS
approved