login
A134476
a(n) = numerator of Product_{j=1..n} 1/(1 + 1/A134473(j)).
5
2, 20, 2650, 32954340, 1308244991416034040, 317520251251282502765281061480522484549, 51348043200265516352304296553233166994035195487912155511387668758325728717007499617
OFFSET
1,1
COMMENTS
The denominator of Product_{j=1..n} 1/(1 + 1/A134473(j)) is A134477(n). A134476(n)/A134477(n) approaches a constant (0.6037789...) as n approaches infinity.
MAPLE
Digits := 220 ; A134473 := proc(n) option remember ; local su, mu ; if n =1 then 2; else su := add(1/procname(k), k=1..n-1) ; mu := mul(1/(1+1/procname(j)), j=1..n-1) ; ceil( (1+su+sqrt((su-1)^2+4*mu))/2/(mu-su) ) ; fi; end: A134476 := proc(n) mul(1/(1+1/A134473(k)), k=1..n) ; numer(%) ; end: seq(A134476(n), n=1..9) ; # R. J. Mathar, Jul 20 2009
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Oct 27 2007
EXTENSIONS
More terms from R. J. Mathar, Jul 20 2009
STATUS
approved