login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134475 a(n) = denominator of Sum_{k=1..n} 1/A134473(k). 6
2, 5, 53, 9886302, 32706124785400851, 105840083750427500921760353826840828183, 51348043200265516352304296553233166994035195487912155511387668758325728717007499617 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The numerator of Sum_{k=1..n} 1/A134473(k) is A134474(n). A134474(n)/A134475(n) approaches a constant (0.6037789...) as n approaches infinity.

LINKS

Table of n, a(n) for n=1..7.

MAPLE

Digits := 220 ; A134473 := proc(n) option remember ; local su, mu ; if n =1 then 2; else su := add(1/procname(k), k=1..n-1) ; mu := mul(1/(1+1/procname(j)), j=1..n-1) ; ceil( (1+su+sqrt((su-1)^2+4*mu))/2/(mu-su) ) ; fi; end: A134475 := proc(n) add(1/A134473(k), k=1..n) ; denom(%) ; end: seq(A134475(n), n=1..9) ; # R. J. Mathar, Jul 20 2009

MATHEMATICA

b[n_] := b[n] = If[n == 1, 2, With[{x = Product[1/(1 + 1/b[j]), {j, 1, n-1}], y = Sum[1/b[j], {j, 1, n-1}]}, Ceiling[(1 + y + Sqrt[(y-1)^2 + 4 x])/(2 (x-y))]]];

a[n_] := Sum[1/b[k], {k, 1, n}] // Denominator;

Table[a[n], {n, 1, 7}] (* Jean-François Alcover, Sep 26 2022 *)

CROSSREFS

Cf. A134473, A134474, A134476, A134477.

Sequence in context: A071882 A206848 A081482 * A218030 A114029 A013171

Adjacent sequences: A134472 A134473 A134474 * A134476 A134477 A134478

KEYWORD

frac,nonn

AUTHOR

Leroy Quet, Oct 27 2007

EXTENSIONS

More terms from R. J. Mathar, Jul 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 09:16 EST 2022. Contains 358367 sequences. (Running on oeis4.)