login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134470 Continued fraction expansion of -zeta(1/2)/sqrt(2*Pi). 4
0, 1, 1, 2, 1, 1, 8, 1, 5, 1, 1, 1, 12, 5, 1, 1, 5, 1, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 11, 1, 6, 1, 3, 2, 1, 1, 1, 1, 1, 2, 6, 7, 1, 4, 2, 1, 1, 1, 13, 1, 1, 1, 2, 4, 2, 11, 1, 2, 5, 1, 8, 1, 78, 10, 1, 64, 1, 29, 1, 3, 1, 1, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 2, 32, 1, 92, 1, 14, 1, 10, 12, 2, 3, 16, 2, 1, 1, 1, 1, 8, 3, 15, 1, 2, 2, 1, 4, 4, 2, 8, 1, 1557, 3, 1, 69, 1, 5, 3, 11, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Hans J. H. Tuenter, Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum, Sequential Analysis, 26(4) (2007) 481-488.

MAPLE

Digits:=100; cfrac(-Zeta(1/2)/sqrt(2*Pi), 30, 'quotients');

MATHEMATICA

ContinuedFraction[ -Zeta[1/2]/Sqrt[2 \[Pi]], 100] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)

PROG

(PARI)

default(realprecision, 1000);

c=-zeta(1/2)/sqrt(2*Pi); /* == 0.582597157... (A134469) */

contfrac(c) /* gives 967 terms */

CROSSREFS

Cf. A134469 (Decimal expansion), A134471 (Numerators of continued fraction convergents), A134472 (Denominators of continued fraction convergents).

Sequence in context: A078689 A230069 A276813 * A119418 A077058 A053373

Adjacent sequences:  A134467 A134468 A134469 * A134471 A134472 A134473

KEYWORD

cofr,nonn,easy

AUTHOR

Hans J. H. Tuenter, Oct 27 2007

EXTENSIONS

More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 20 22:19 EDT 2018. Contains 305615 sequences. (Running on oeis4.)