login
A134353
Row sums of triangle A134352.
5
1, 2, 8, 16, 48, 96, 256, 512, 1280, 2560, 6144, 12288, 28672, 57344, 131072, 262144, 589824, 1179648, 2621440, 5242880, 11534336, 23068672, 50331648, 100663296, 218103808, 436207616, 939524096, 1879048192, 4026531840, 8053063680, 17179869184
OFFSET
0,2
FORMULA
a(n) = 2^n * A004526(n+2).
From Arkadiusz Wesolowski, Dec 28 2011: (Start)
a(n) = 2^(n-2)*(2*n + 3 + (-1)^n).
G.f.: 1/((1 - 2*x)*(1 - 4*x^2)). (End)
G.f.: G(0)/(1-x), where G(k)= 1 + 2*x*(k+1)/(k+2 - 2*x*(k+2)*(k+3)/(2*x*(k+3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
EXAMPLE
a(3) = 16 sum of row 3 terms of triangle A134352: (0 + 8 + 0 + 8).
a(4) = 48 = 2^4 * A004526(6) = 16 * 3.
MATHEMATICA
Table[2^n*((2*n + 3)/4 + (-1)^n/4), {n, 0, 30}] (* Arkadiusz Wesolowski, Dec 28 2011 *)
LinearRecurrence[{2, 4, -8}, {1, 2, 8}, 40] (* Harvey P. Dale, Nov 09 2017 *)
CROSSREFS
Sequence in context: A096227 A191309 A323351 * A280229 A360323 A336127
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Oct 21 2007
STATUS
approved