login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134343 Expansion of psi(-x)^2 in powers of x where psi() is a Ramanujan theta function. 11
1, -2, 1, -2, 2, 0, 3, -2, 0, -2, 2, -2, 1, -2, 0, -2, 4, 0, 2, 0, 1, -4, 2, 0, 2, -2, 0, -2, 2, -2, 1, -4, 0, 0, 2, 0, 4, -2, 2, -2, 0, 0, 3, -2, 0, -2, 4, 0, 2, -2, 0, -4, 0, 0, 0, -4, 3, -2, 2, 0, 2, -2, 0, 0, 2, -2, 4, -2, 0, -2, 2, 0, 3, -2, 0, 0, 4, 0, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Number 57 of the 74 eta-quotients listed in Table I of Martin (1996).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/4) * (eta(q) * eta(q^4) / eta(q^2))^2 in powers of q.

Euler transform of period 4 sequence [ -2, 0, -2, -2, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 8 (t/i) f(t) where q = exp(2 Pi i t).

a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 8), b(p^e) = (-1)^e * (e+1) if p == 5 (mod 8).

G.f.: (Product_{k>0} (1 - x^k) * (1 + x^(2*k)))^2.

a(9*n + 5) = a(9*n + 8) = 0. a(n) = (-1)^n * A008441(n). a(2*n) = A113407(n). a(2*n + 1) = -2 * A053692(n).

2 * a(n) = A204531(4*n + 1) = - A246950(n). a(4*n) = A246862(n). a(4*n + 2) = A246683(n). - Michael Somos, Jun 22 2015

a(4*n + 1) = -2 * A259287(n). a(4*n + 3) = -2 * A259285(n). - Michael Somos, Jun 24 2015

Convolution square is A121613. Convolution cube is A213791. Convolution with A000009 is A143379. Convolution with A000143 is A209942. Michael Somos, Jun 22 2015

G.f.: Sum_{k>0 odd} (x^k + x^(3*k)) / (1 + x^(4*k)) * (-1)^floor((k+1) / 4). - Michael Somos, Jun 22 2015

G.f.: Sum_{k>0 odd} (x^k - x^(3*k)) / (1 + x^(4*k)) * (-1)^floor(k / 4). - Michael Somos, Jun 22 2015

EXAMPLE

G.f. = 1 - 2*x + x^2 - 2*x^3 + 2*x^4 + 3*x^6 - 2*x^7 - 2*x^9 + 2*x^10 + ...

G.f. = q - 2*q^5 + q^9 - 2*q^13 + 2*q^17 + 3*q^25 - 2*q^29 - 2*q^37 + ...

MATHEMATICA

a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]]; (* Michael Somos, Jun 22 2015 *)

a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)]^2 / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Jun 22 2015 *)

a[ n_] := SeriesCoefficient[(QPochhammer[ x] QPochhammer[ x^4] / QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jun 22 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, (-1)^n * sumdiv( 4*n + 1, d, (-1)^(d\2)))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^4 + A) / eta(x^2 + A) )^2, n))};

(MAGMA) A := Basis( ModularForms( Gamma1(64), 1), 321); A[2] - 2*A[6] + A[10] - 2*A[14] + 2*A[18] + 3*A[26] - 2*A[30] + 2*A[35] - 2*A[36]; /* Michael Somos, Jun 22 2015 */;

CROSSREFS

Cf. A008441, A053692, A113407, A121613, A143379, A209942, A213791, A246862, A246683, A246950, A259285, A259287.

Sequence in context: A108805 A283305 A226005 * A008441 A253183 A108804

Adjacent sequences:  A134340 A134341 A134342 * A134344 A134345 A134346

KEYWORD

sign

AUTHOR

Michael Somos, Oct 21 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 12:14 EDT 2019. Contains 321448 sequences. (Running on oeis4.)