login
A134314
First differences of A134429.
2
-8, 8, -8, 16, -24, 24, -24, 32, -40, 40, -40, 48, -56, 56, -56, 64, -72, 72, -72, 80, -88, 88, -88, 96, -104, 104, -104, 112, -120, 120, -120, 128, -136, 136, -136, 144, -152, 152, -152, 160, -168, 168, -168, 176, -184, 184, -184, 192, -200, 200, -200, 208
OFFSET
0,1
FORMULA
From R. J. Mathar, Feb 07 2009: (Start)
a(n)= -2*a(n-1)-2*a(n-2)-2*a(n-3)-a(n-4) = -8*(-1)^n*A004525(n+1).
G.f.: -8*(1+x+x^2)/((1+x^2)*(1+x)^2). (End)
MAPLE
A134429 := proc(n) npr := floor(n/4) ; if (n mod 4 =0) or (n mod 4 = 2) then 8*npr+3 ; else -8*npr-5 ; fi; end: A134314 := proc(n) A134429(n+1)-A134429(n) ; end: seq(A134314(n), n=0..80) ; # R. J. Mathar, Feb 07 2009
MATHEMATICA
LinearRecurrence[{-2, -2, -2, -1}, {-8, 8, -8, 16}, 52] (* Jean-François Alcover, Mar 31 2020 *)
CROSSREFS
Sequence in context: A203127 A023415 A294659 * A242891 A266209 A077106
KEYWORD
sign,easy,less
AUTHOR
Paul Curtz, Jan 30 2008
EXTENSIONS
Edited by N. J. A. Sloane, Mar 23 2008
More terms from R. J. Mathar, Feb 07 2009
STATUS
approved