|
|
A134301
|
|
Periodic sequence (0, 2, 6, 2, 0).
|
|
0
|
|
|
0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0, 0, 2, 6, 2, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also: twice the partial sums of A117444. - R. J. Mathar, Feb 01 2008
|
|
REFERENCES
|
Rozsa Peter, Leon Harkleroad, Mathematics is Beautiful, Math. Intellig., 12 (No. 1, 1990), 58-64.
|
|
LINKS
|
Table of n, a(n) for n=0..64.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
|
|
FORMULA
|
a(n) = n(n+1) mod 10
O.g.f.: -2/(x-1)+(2*x^3+2*x^2-2*x-2)/(1+x+x^2+x^3+x^4). a(n)=a(n-5). - R. J. Mathar, Feb 01 2008
a(n)=(1/5)*{(n mod 5)+3*[(n+1) mod 5]+5*[(n+2) mod 5]-3*[(n+3) mod 5]-[(n+4) mod 5]}, with n>=0 - Paolo P. Lava, Feb 05 2008
|
|
MATHEMATICA
|
PadRight[{}, 70, {0, 2, 6, 2, 0}] (* Harvey P. Dale, Mar 22 2012 *)
|
|
PROG
|
(PARI) a(n)=[0, 2, 6, 2, 0][n%5+1] \\ Charles R Greathouse IV, Jul 13 2016
|
|
CROSSREFS
|
Sequence in context: A117214 A185972 A182918 * A168294 A004544 A010590
Adjacent sequences: A134298 A134299 A134300 * A134302 A134303 A134304
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Franz Vrabec, Jan 30 2008
|
|
STATUS
|
approved
|
|
|
|