This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134285 Triangle of numbers obtained from the partition array A134284. 5
 1, 3, 1, 10, 3, 1, 35, 19, 3, 1, 126, 65, 19, 3, 1, 462, 331, 92, 19, 3, 1, 1716, 1190, 421, 92, 19, 3, 1, 6435, 5587, 1805, 502, 92, 19, 3, 1, 24310, 20613, 8771, 2075, 502, 92, 19, 3, 1, 92378, 92821, 35726, 10616, 2318, 502, 92, 19, 3, 1, 352716, 347930, 160205 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This triangle is called s2(3)'. LINKS W. Lang, First 10 rows and more. FORMULA a(n,m)=sum(product(s2(3;j,1)^e(n,m,q,j),j=1..n),k=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. s2(3;n,1) = A035324(n,1) = A001700(n-1) = binomial(2*n-1,n). Row sums = A001700. Triangle A134285 = A001263 * A000012 - Gary W. Adamson, Nov 19 2007 EXAMPLE [1];[3,1];[10,3,1];[35,19,3,1];[126,65,19,3,1];... First few rows of the triangle are: 1; 2, 1; 5, 4, 1; 14, 13, 7, 1; 42, 41, 31, 11, 1; 132, 131, 116, 66, 16, 1; 429, 428, 407302, 127, 22, 1; ... a(4,2)=19 because the m=2 parts partitions (1^1,3^1) and (2^2) of n=4 lead to 1^1*10^1 + 3^2 =19, since A001700(n-1)=[1,3,10,...], n>=1. CROSSREFS Row sums A134826. Alternating row sums A134827. Cf. A001700. Sequence in context: A135573 A126953 A134284 * A141811 A126954 A176992 Adjacent sequences:  A134282 A134283 A134284 * A134286 A134287 A134288 KEYWORD nonn,easy AUTHOR Wolfdieter Lang Nov 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .