%I #29 Feb 16 2024 05:47:21
%S 2,3,5,7,13,19,23,31,47,53,61,73,83,89,113,293,317,523,887,1129,1327,
%T 8467,9551,12853,14107,15683,19609,25471,31397,155921,338033,360653,
%U 370261,492113,1349533,1357201,1561919,2010733,4652353,11113933,15203977,17051707,20831323,47326693,122164747,189695659,191912783
%N Primes associated with the prime gaps listed in A085237.
%C The smallest prime p(n) such that p(n+1)-p(n) is nondecreasing. The smallest prime p(n) such that (p(n+1)/p(n))^p(n) is increasing. [_Thomas Ordowski_, May 26 2012]
%C a(n) is the last prime in the n-th sublist of prime numbers defined in A348178. - _Ya-Ping Lu_, Oct 19 2021
%H Michel Planat and Patrick Solé, <a href="http://arxiv.org/abs/1410.1083">Improving Riemann prime counting</a>, arXiv preprint arXiv:1410.1083 [math.NT], 2014.
%F a(n) = A000040(A085500(n)). - _M. F. Hasler_, Apr 26 2014
%o (Python)
%o from sympy import nextprime; p, r = 2, 0
%o while p < 2*10**8:
%o q = nextprime(p); g = q - p
%o if g >= r: print(p, end = ', '); r = g
%o p = q # _Ya-Ping Lu_, Jan 23 2024
%Y See also A205827(n) = A000040(A214935(n)), A182514(n) = A000040(A241540(n)).
%Y Cf. A348178.
%K nonn
%O 1,1
%A _David W. Wilson_, Dec 31 2007