%I #11 May 30 2016 06:19:13
%S 0,0,0,384,4800,25920,91200,248640,572544,1169280,2183040,3801600,
%T 6262080,9856704,14938560,21927360,31315200,43672320,59652864,
%U 80000640,105554880,137256000,176151360,223401024,280283520,348201600,428688000,523411200
%N a(n) = 8*(n-1)*(n-2)*(n-3)*(6*n^2-37*n+60).
%H G. C. Greubel, <a href="/A134241/b134241.txt">Table of n, a(n) for n = 1..1000</a>
%H D. Zvonkine, <a href="http://www.math.jussieu.fr/~zvonkine/">Home Page</a>
%H D. Zvonkine, <a href="http://mi.mathnet.ru/eng/mmj274">Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results)</a>, Moscow Mathematical Journal, vol. 7 (2007), no. 1, 135-162.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F O.g.f.: 192*x^4*(3*x+2)*(5*x+1)/(-1+x)^6 . - _R. J. Mathar_, Feb 01 2008
%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - _G. C. Greubel_, May 30 2016
%t LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 384, 4800, 25920}, 50] (* or *) Table[8 (n - 1) (n - 2) (n - 3) (6 n^2 - 37 n + 60), {n, 1, 25}] (* _G. C. Greubel_, May 30 2016 *)
%K nonn,easy
%O 1,4
%A _N. J. A. Sloane_, Jan 30 2008