The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134193 a(1) = 1; for n>1, a(n) = the smallest positive integer not occurring among the exponents in the prime-factorization of n. 4
 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A257993(A181819(n)). - Antti Karttunen, Jul 28 2017 EXAMPLE The prime factorization of 24 is 2^3 * 3^1. The exponents are 3 and 1. Therefore a(24) = 2 is the smallest positive integer not occurring among (3,1). MATHEMATICA Table[Complement[Range[n], Table[FactorInteger[n][[i, 2]], {i, 1, Length[FactorInteger[n]]}]][[1]], {n, 2, 120}] (* Stefan Steinerberger, Jan 21 2008 *) PROG (Scheme) (define (A134193 n) (A257993 (A181819 n))) ;; Antti Karttunen, Jul 28 2017 (PARI) a(n) = if (n==1, 1, my(f=factor(n)); ve = vecsort(f[, 2], , 8); k = 1; while(vecsearch(ve, k), k++); k; ); \\ Michel Marcus, Jul 28 2017 CROSSREFS Cf. A136567, A181819, A257993. Sequence in context: A072463 A128853 A136165 * A230259 A085030 A078377 Adjacent sequences:  A134190 A134191 A134192 * A134194 A134195 A134196 KEYWORD nonn AUTHOR Leroy Quet, Jan 13 2008 EXTENSIONS More terms from Stefan Steinerberger, Jan 21 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 9 17:35 EDT 2020. Contains 333361 sequences. (Running on oeis4.)