login
A134190
a(1)=1. a(n) = n*a(n-1) if n*a(n-1) has a fewer number of divisors than n+a(n-1) does. a(n) = n+a(n-1) if n*a(n-1) has a greater or equal number of divisors than n+a(n-1) does.
1
1, 3, 9, 13, 65, 71, 497, 505, 514, 524, 535, 547, 7111, 7125, 106875, 106891, 1817147, 1817165, 34526135, 34526155, 34526176, 34526198, 34526221, 34526245, 34526270, 897683020, 897683047, 897683075, 897683104, 897683134, 897683165, 897683197
OFFSET
1,2
EXAMPLE
a(6)+7 = 71 + 7 = 78. a(6)*7 = 71 * 7 = 497. 78 has 8 divisors. 497 has 4 divisors. Since 497 has fewer divisors than 78, a(7) is therefore 497.
MATHEMATICA
a = {1}; For[n=2, n < 40, n++, If[Length[Divisors[n*a[[ -1]]]] < Length[Divisors[n+ a[[ -1]]]], AppendTo[a, n*a[[ -1]]], AppendTo[a, n + a[[ -1]]]]]; a (* Stefan Steinerberger, Oct 26 2007 *)
CROSSREFS
Cf. A134189.
Sequence in context: A018292 A089147 A094043 * A047905 A134904 A358271
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 12 2007
EXTENSIONS
More terms from Stefan Steinerberger, Oct 26 2007
STATUS
approved