OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..59
FORMULA
G.f.: Sum_{n>=0} log(1 + (2^n-1)*x)^n / n!.
a(n) = (1/n!) * Sum_{k=0..n} Stirling1(n,k) * (2^k-1)^n.
From Vaclav Kotesovec, Jul 02 2016: (Start)
a(n) ~ binomial(2^n,n).
a(n) ~ 2^(n^2) / n!.
a(n) ~ 2^(n^2 - 1/2) * exp(n) / (sqrt(Pi) * n^(n+1/2)).
(End)
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 44*x^3 + 1546*x^4 + 180096*x^5 +...
where
A(x) = 1 + log(1+x) + log(1+3*x)^2/2! + log(1+7*x)^3/3! + log(1+15*x)^4/4! + log(1+31*x)^5/5! + log(1+63*x)^6/6! + log(1+127*x)^7/7! + log(1+255*x)^8/8! +...
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[n, k]*Binomial[2^k, n], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) {a(n)=local(A=1, X=x+x*O(x^n)); A=sum(k=0, n, log(1+(2^k-1)*X)^k/k!); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{a(n)=1/n!*sum(k=0, n, Stirling1(n, k)*(2^k-1)^n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna and Vladeta Jovovic, Jan 13 2008
STATUS
approved