The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134119 a(n) = floor(n^2/10) - floor((n-1)^2/10). 1
 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Note that for n >=1 there is a pattern that keeps steadily alternating between 4 terms and 6 terms for the each two consecutive groups. The terms value remains the same within each 4-term or 6-term group, while during the switch from the 4-group to the 6-group and then back from the 6-group to the 4-group, etc., the term value is getting bumped by 1. Assuming this obeys the recurrence a(n) = a(n-10) + 2, this has generating function G(x) = x^4*(1+x^4)/[(-1+x)^2*(x+1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1)] = (1 - 3x^2 - 3x^3)/[10(x^4 + x^3 + x^2 + x + 1)]+1/[10(x+1)] + 1/[5(-1+x)^2] +(-1 + 2x - 3x^2 - x^3)/[10(x^4 - x^3 + x^2 - x + 1)] + 3/[10(-1+x)]. The first term can be rewritten as a linear superposition of A104384(n), A104384(n+2), A103483(n+3); the second, ~1/(x+1), with the alternating A033999, the third component ~1/(x-1)^2 with a(n)=n+1, the next ~1/(x^4 - x^3 + x^2 - x + 1) = A014019 and the last is proportional to 1/(1-x) = A000012. So a(n) is a sum of these sequences. - R. J. Mathar, Jan 16 2008 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA Empirical g.f.: x^4*(x^4+1) / (x^11 - x^10 - x + 1). - Colin Barker, Aug 08 2013 MATHEMATICA Table[Floor[n^2/10] - Floor[(n - 1)^2/10], {n, 0, 50}] (* G. C. Greubel, Feb 22 2017 *) PROG (PARI) a(n)= floor(n^2/10) - floor((n-1)^2/10) CROSSREFS Sequence in context: A004052 A247781 A051742 * A064661 A226982 A280952 Adjacent sequences: A134116 A134117 A134118 * A134120 A134121 A134122 KEYWORD nonn AUTHOR Alexander R. Povolotsky, Jan 12 2008 EXTENSIONS More terms from N. J. A. Sloane, Jan 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)