The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134084 G.f. A(x) = G(2x) where G(x) satisfies [x^(n+1)] G(x)^(2^n) = [x^n] G(x)^(2^n) for n>=0. 5
 1, 2, 2, -4, -106, -6948, -1623788, -1213437064, -2912047916698, -23264250235542100, -641982248042094828676, -62929856484660987275500088, -22331407793040258023249030997892, -29057717949243934527799656871001480808 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS G.f. A(x) satisfies: A(x/2)^2 is the g.f. of an integer sequence (A134085). LINKS FORMULA A134086(n) = [x^n] G(x)^(2^n) for n>=0. A134087(n) = [x^n] G(x)^(2^(n+1)) for n>=0. G.f. A(x) satisfies: [x^(n+1)] A(x)^(2^n) = 2 * [x^n] A(x)^(2^n) for n>=0. G.f. A(x) satisfies: 1 = Sum_{n>=0} (1/2^n - x) * log( A(2^(n-1)*x) )^n / n! = (1-x) + (1/2-x)log(A(x)) + (1/4-x)log(A(2x))^2/2! + (1/8-x)log(A(4x))^3/3! +... - Paul D. Hanna, Jan 05 2008 EXAMPLE G.f. A(x) = 1 + 2*x + 2*x^2 - 4*x^3 - 106*x^4 - 6948*x^5 - ... Define G(x) = A(x/2); illustrate that G(x) satisfies [x^(n+1)] G(x)^(2^n) = [x^n] G(x)^(2^n) by listing powers G(x)^(2^n) as follows: G(x)^1 = (1 + x) + 1/2*x^2 - 1/2*x^3 - 53/8*x^4 - 1737/8*x^5 -...; G(x)^2 = 1+(2x + 2x^2) + 0x^3 - 14x^4 - 448x^5 - 51184x^6 -...; G(x)^4 = 1 +4x +(8x^2 + 8x^3) - 24x^4 - 952x^5 - 104216x^6 -...; G(x)^8 = 1 +8x +32x^2 +(80x^3 + 80x^4) - 1968x^5 - 216368x^6 -...; G(x)^16 = 1 +16x +128x^2 +672x^3 +(2464x^4 + 2464x^5) -452704x^6 -...; G(x)^32 = 1 +32x +512x^2+5440x^3 +42816x^4+(255808x^5 + 255808x^6) -...; to show that the coefficients within the parenthesis are equal. Note also that G(x)^2 consists entirely of integer coefficients. PROG (PARI) {a(n)=local(A=[1], B); for(i=1, n, A=concat(A, 0); B=Vec(Ser(A)^(2^(#A-2))); A[ #A]=(B[ #B-1]-B[ #B])/2^(#A-2)); 2^n*A[n+1]} CROSSREFS Cf. A134085, A134086, A134087, A134088, A134089. Sequence in context: A037010 A294184 A114695 * A267346 A264933 A012858 Adjacent sequences: A134081 A134082 A134083 * A134085 A134086 A134087 KEYWORD sign AUTHOR Paul D. Hanna, Oct 25 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 08:38 EST 2022. Contains 358422 sequences. (Running on oeis4.)