

A134063


a(n) = (1/2)*(3^n  2^(n+1) + 3).


0



1, 1, 2, 7, 26, 91, 302, 967, 3026, 9331, 28502, 86527, 261626, 788971, 2375102, 7141687, 21457826, 64439011, 193448102, 580606447, 1742343626, 5228079451, 15686335502, 47063200807, 141197991026, 423610750291, 1270865805302, 3812664524767, 11438127792026
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Let P(A) be the power set of an nelement set A. Then a(n1) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 2) x = y.
The inverse binomial transform yields A033484 with another leading 1. [From R. J. Mathar, Jul 06 2009]


LINKS

Table of n, a(n) for n=0..28.
Ross La Haye, Binary Relations on the Power Set of an nElement Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6. [Ross La Haye, Feb 22 2009]
Index entries for linear recurrences with constant coefficients, signature (6,11,6)


FORMULA

a(n) = 3*StirlingS2(n,3) + StirlingS2(n,2) + 1.
a(n) = StirlingS2(n+1,3) + 1.  Ross La Haye, Jan 21 2008
a(n) = 6 a(n1)11 a(n2) +6 a(n3) (n >= 3). Also a(n) = 4 a(n1)3 a(n2)+ 2^{n2} (n >= 3).  TianXiao He (the(AT)iwu.edu), Jul 02 2009
G.f.: (14*x+6*x^2)/((x1)*(3*x1)*(2*x1)). a(n+1)a(n)=A001047(n+1). [R. J. Mathar, Jul 06 2009]


EXAMPLE

a(3) = 7 because for P(A) = {{},{1},{2},{1,2}} we have: case 0 {{1},{2}}, case 1 {{1},{1,2}}, {2},{1,2}}, case 2 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}.


MAPLE

f := n > (1/2)*(3^n  2^(n+1) + 3);


CROSSREFS

Cf. A000392, A028243, A000079.
Sequence in context: A212961 A000697 A027417 * A087448 A289449 A188860
Adjacent sequences: A134060 A134061 A134062 * A134064 A134065 A134066


KEYWORD

nonn


AUTHOR

Ross La Haye, Jan 11 2008


EXTENSIONS

Edited by N. J. A. Sloane, Jul 06 2009


STATUS

approved



