login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134055 a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(n,k) for n>0, a(0)=1, where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind. 13
1, 1, 2, 8, 41, 252, 1782, 14121, 123244, 1169832, 11960978, 130742196, 1518514076, 18645970943, 241030821566, 3268214127548, 46338504902485, 685145875623056, 10538790233183702, 168282662416550040, 2784205185437851772, 47646587512911994120 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..21.

FORMULA

O.g.f.: Sum_{n>=0} (n*x)^n/(1-n*x)^n * exp(-n*x/(1-n*x)) / n!. - Paul D. Hanna, Nov 04 2012

EXAMPLE

O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 252*x^5 + 1782*x^6 + 14121*x^7 +...

where

A(x) = 1 + x/(1-x)*exp(-x/(1-x)) + 2^2*x^2/(1-2*x)^2*exp(-2*x/(1-2*x))/2! + 3^3*x^3/(1-3*x)^3*exp(-3*x/(1-3*x))/3! + 4^4*x^4/(1-4*x)^4*exp(-4*x/(1-4*x))/4! +...

simplifies to a power series in x with integer coefficients.

Illustrate the definition of the terms by:

a(4) = 1*1 + 3*7 + 3*6 + 1*1 = 41;

a(5) = 1*1 + 4*15 + 6*25 + 4*10 + 1*1 = 252;

a(6) = 1*1 + 5*31 + 10*90 + 10*65 + 5*15 + 1*1 = 1782.

MATHEMATICA

Flatten[{1, Table[Sum[Binomial[n-1, k-1] * StirlingS2[n, k], {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 11 2014 *)

PROG

(PARI) a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1)*polcoeff(1/prod(i=0, k, 1-i*x +x*O(x^(n-k))), n-k)))

(PARI) a(n)=polcoeff(sum(k=0, n+1, (k*x)^k/(1-k*x)^k*exp(-k*x/(1-k*x+x*O(x^n)))/k!), n)

for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 04 2012

CROSSREFS

Cf. A048993, A122455, A218667, A218670, A245059, A245060.

Sequence in context: A067119 A093935 A099240 * A136281 A125698 A231495

Adjacent sequences:  A134052 A134053 A134054 * A134056 A134057 A134058

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 08 2007

EXTENSIONS

An initial '1' was added and definition changed slightly by Paul D. Hanna, Nov 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 20:30 EDT 2018. Contains 315270 sequences. (Running on oeis4.)